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Abstract. We develop a new method for combining Mitchell forcing
with Extender-Based Prikry forcing. As an application we produce a
model of ZFC where GCH<𝜅, Refl(𝜅+) and the ineffable tree property
ITP(𝜅++) hold simultaneously.

1. Introduction

Suppose that all the “small” substructures of a given mathematical struc-
ture (a group, a graph, etc) witness a property 𝜙. Does the entire structure
satisfy 𝜙? If this turns out to be the case one says that compactness holds.
Roughly speaking, compactness is the phenomenon by which the local be-
havior of a mathematical structure determines its global nature.

As a fact of nature, compactness holds when “small” means finite. For
instance, a theorem of De Bruijn and Erdös [BE51] establishes that a graph
𝒢 has chromatic number ≤𝑛 (for a fixed 𝑛 ∈ N) provided all of its finite
subgraphs ℋ have chromatic number ≤𝑛. In mathematical logic and set
theory two of the most prominent classical examples are Gödel’s Compact-
ness Theorem for first-order logic and the Lévy reflection theorem. Besides
of these, compactness has found several applications in other areas or pure
mathematics; such as Ramsey Theory, Algebra or Topology.

What if the small substructures are – rather than just finite – of size less
than 𝜅 for a cardinal 𝜅 ≥ ℵ1? Should one still expect forms of compactness?
In general, compactness fails at the level of ℵ1; namely, when the substruc-
tures are countable. In contrast, compactness can hold for higher cardinals,
but this typically requires the existence of large cardinals.

This paper is concerned with two prominent set-theoretic manifestations
of the compactness phenomenon – the tree property and stationary reflection.
Given an uncountable regular cardinal 𝜅 the tree property holds at 𝜅 (in
symbols, TP(𝜅)) if every 𝜅-tree 𝑇 has a cofinal branch. Stationary reflection
holds at 𝜅 (in symbols, Refl(𝜅)) if every stationary set 𝑆 ⊆ 𝜅 reflects; namely,
there is 𝛼 < 𝜅 of uncountable cofinality such that 𝑆 ∩ 𝛼 is stationary in 𝛼.

The tree property at ℵ0 is simply the conclusion of König’s infinity lemma.
In contrast, by Aronszajn, the tree property fails at the first uncountable
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cardinal, ℵ1. Later, Mitchell proved in [Mit72] that TP(ℵ2) is consistent (i.e.,
non contradictory with the ZFC axioms). He started with a type of large
cardinal called weakly compact and used what is now called Mitchell forcing
to turn it into ℵ2. By Silver, this large cardinal hypothesis is necessary.

The tree property is closely tied with cardinal arithmetic. To get the tree
property at ℵ2, the Continuum Hypothesis (CH) must fail. More generally,
Specker [Spe90] showed that the tree property at the double successor of
a singular strong limit cardinal implies the failure of the Singular Cardinal
Hypothesis (SCH). SCH is a parallel of CH for singular cardinals. The first
result in this vein is due to Cummings and Foreman [CF98], who proved
that TP(𝜅++) is consistent for 𝜅 singular strong limit.

The other property under consideration is stationary reflection. It is
a classical result of Jensen that in Gödel’s constructible universe Refl(𝜅)
holds if and only if 𝜅 is weakly compact, thus affirming its large-cardinal
strength. Regarding successors of singular cardinals, Magidor showed in
[Mag82] that Refl(ℵ𝜔+1) is consistent with ZFC. Recently, Hayut and Unger
[HU20] reduced the large cardinal assumptions employed by Magidor.

An ongoing ambitious program in set theory is to determine the extent to
which various compactness principles can coexist. The focus of this paper
is combining stationary reflection at the successor of a singular 𝜅 with the
tree property at the double successor of 𝜅. In the course of this enterprise,
this paper shall introduce a new technology combining Mitchell’s classical
forcing [Mit72] with Gitik–Magidor Extender–Based Prikry forcing [GM94].

A precursor of this technology traces back to Cummings–Foreman proof of
the tree property at the double successor of a singular [CF98]. In that paper
the authors interleaved Prikry forcing into the Mitchell poset with an eye
kept at singularizing a cardinal while carrying out the tree property construc-
tion. Ever since Mitchell-like posets subsuming other Prikry-type forcings
have been used in various similar constructions [Sin16, FHS18, Pov20].

However, none of these posets were themselves of Prikry-type, meaning
there do not satisfy a Prikry lemma. In this paper we show that it is possible
to combine Mitchell forcing with the Gitik-Magidor Extender-Based Prikry
forcing into a poset that has the Prikry property in its own right. We believe
our construction can be generalized to combine other Prikry type posets, and
so get a variety of forcings.

Then we feed our Mitchell-Prikry poset into the iteration framework of
[PRS22] to produce the following configuration:

Theorem. Assume GCH. Suppose that ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is an increasing se-
quence of supercompact cardinals with limit 𝜅 and 𝜆 is supercompact with
𝜆 > 𝜅. Then there is a generic extension of the set-theoretic universe where:

(1) 𝜅 is strong limit and 𝜆 = 𝜅++;
(2) GCH<𝜅 holds but 2𝜅 = 𝜆;
(3) Refl(𝜅+) holds;
(4) TP(𝜆) holds. Actually, the Ineffable Tree Property (ITP) holds.
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ITP is a strengthening of TP, isolated by Magidor [Mag74], and more
recently studied by Weiß [Wei12]. Just like the tree property captures the
combinatorial essence of weak compactness, ITP captures supercompactness
– given an inaccessible 𝜅, ITP(𝜅) holds if and only if 𝜅 is supercompact.

Let us now outline the content of the manuscript. In Section 2, we define
the new Prikry-type forcing combining the Mitchell poset, M, from [Mit72]
with the Gitik-Magidor Extender-Based Prikry forcing [GM94]. This poset
will be the initial step in the iteration leading to the above stated theorem.
Section 3 presents a variant of Sharon’s functor from [PRS22], designed
to destroy non-reflecting stationary sets. In Section 4, we describe the Σ-
Prikry-style iteration P𝜆, which will be used in our construction. In Section
5 we prove our theorem about stationary reflection and the tree property.
The key technical result is that ITP(𝜆) holds after forcing with P𝜆. We build
on previous works by Gitik [Git11] and Hatchman–Sinapova [HS19]. Our
proof is considerably more complex than its ancestors [Git11, HS19] for P𝜆

is more involved than the forcings used in those works.

The paper is largely self-contained but some parts require acquaintance
with the theory of Σ-Prikry forcings [PRS22, PRS23]. The reader will be
provided with precise references when this is necessary. As in those papers,
here we use the following notation: Given a projection 𝜋 : Q → P, and
conditions 𝑞, 𝑟 ∈ 𝑄, we say that 𝑞 ≤𝜋 𝑟 if 𝑞 ≤Q 𝑟 and 𝜋(𝑞) = 𝜋(𝑟). We shall
denote by Q𝜋 the poset (𝑄,≤𝜋).

2. A Mitchell-like Extender Based Forcing

In this section we introduce a hybrid between the Mitchell forcing from
[Mit72] and the Gitik-Magidor Extender Based Prikry forcing from [GM94].
The motivation is to devise a poset that forces the tree property at the
doule successor of a singular cardinal and has the nice properties of diagonal
extender based forcing (particularly, when it comes to stationary reflection).

2.1. Definition of M. Assume GCH. Through this section Σ := ⟨𝜅𝑛 |
𝑛 < 𝜔⟩ is an increasing sequence of (𝜆 + 1)-strong cardinals such that 𝜆
is a regular cardinal with 𝜆 > 𝜅 := sup(Σ). For each 𝑛 < 𝜔 we fix a
(𝜅𝑛, 𝜆 + 1)-extender 𝐸𝑛 witnessing that 𝜅𝑛 is (𝜆 + 1)-strong. Let P be the
Gitik-Magidor Extender-based Prikry forcing (EBPF) defined with respect to

the sequence of extenders �⃗� [Git10, §2]. The present section is self-contained
but familiarity with the notations in [Git10, §2] is assumed. In what follows
ℛ will denote the regular cardinals in [𝜅+, 𝜆).

We will need a couple of technical observations about the EBPF and its
projections. Given 𝑝 = ⟨𝑓𝑝0 , . . . , 𝑓

𝑝
ℓ−1, (𝑎

𝑝
ℓ , 𝐴

𝑝
ℓ , 𝑓

𝑝
ℓ ), . . . ⟩ ∈ P and 𝛼 ≤ 𝜆 such

that every member of ⟨𝑎𝑝𝑛∩𝛼 | 𝑛 ≥ ℓ⟩ contains a ≤𝐸𝑛-maximal element, one
can define its putative restriction 𝑝 ↾ 𝛼 to P ↾ 𝛼 := P⟨𝐸𝑛↾𝛼|𝑛<𝜔⟩ as follows:

𝑝 ↾ 𝛼 := ⟨𝑓𝑝0 ↾ 𝛼, . . . , 𝑓𝑝ℓ−1 ↾ 𝛼, (𝑎
𝑝
ℓ ∩ 𝛼, 𝜋mc(𝑎𝑝ℓ ),mc(𝑎𝑝ℓ∩𝛼)

“𝐴𝑝
ℓ , 𝑓

𝑝
ℓ ↾ 𝛼), . . . ⟩.
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Lemma 2.1 ([Git10, Lemma 2.2]). Let 𝜃 ∈ ℛ and 𝑛 < 𝜔. Then, the partial
order ≤𝐸𝑛 ↾(𝜃 × 𝜃) is 𝜅𝑛-directed. Moreover, for every 𝑎 ∈ [𝜃]<𝜅𝑛 there are
𝜃-many 𝛼 < 𝜃 such that 𝛼 ≥𝐸𝑛 𝛽 for all 𝛽 ∈ 𝑎.

If 𝛼 ∈ ℛ and 𝑝 ∈ P then one can use Lemma 2.1 to produce a condition
𝑞 ∈ P, 𝑞 ≤* 𝑝, with the same Cohen functions (i.e., 𝑓 𝑞𝑛 = 𝑓𝑝𝑛 for all 𝑛 < 𝜔)
and such that 𝑞↾𝛼 ∈ P↾𝛼. Pushing this idea further it is possible to isolate a
≤*-dense subposet Q of P for which 𝑝 ↾𝛼 is always well-defined. Specifically,
let us consider Q the subposet of P whose universe is

{𝑝 ∈ P | ∀𝑛 ≥ ℓ(𝑝) ∀𝛼 ∈ ℛ (mc(𝑎𝑝𝑛 ∩ 𝛼) exists)}.
The following is a routine verification.

Lemma 2.2. Q is ≤*-dense in P. □

By virtue of Lemma 2.2, Q and P are forcing equivalent. As a result, we
do not lose any generality by assuming that our EBPF poset is Q. In a slight
abuse of notation we shall keep denoting this poset by P.

There is a natural strengthening of the ≤*-ordering enjoying of better
closure properties – this is the so-called fusion ordering.

Definition 2.3 (Fusion ordering). Let 𝑝, 𝑞 ∈ P be conditions with length ℓ
and 𝑘 ≥ ℓ. We shall write 𝑝 ≤*,𝑘 𝑞 if 𝑝 ≤* 𝑞 and the following clauses hold:

(1) 𝑎𝑝𝑛 = 𝑎𝑞𝑛 for 𝑛 ∈ [ℓ, 𝑘];
(2) 𝐴𝑝

𝑛 = 𝐴𝑞
𝑛 for 𝑛 ∈ [ℓ, 𝑘];

We shall write 𝑝 ≤*,𝑘,− 𝑞 if 𝑝 ≤* 𝑞 and Clause (1) above hold.

Lemma 2.4. For each 𝑘 < 𝜔, ⟨P,≤*,𝑘⟩ is 𝜅𝑘+1-closed. □

The orderings ≤*,𝑘,− and ≤*,𝑘 will play a key role in our discussions about
the tree property. On a similar vein, we will also need to identify various
natural projections associated to the EBPF poset:

Lemma 2.5. Fix 𝛽 < 𝛼 in ℛ. Then,

· ↾ 𝛽 : 𝑝 ↦→ 𝑝 ↾ 𝛽,

is a length-preserving projection from P ↾ 𝛼 to P ↾ 𝛽.
These projections commute and, for each 𝑝 ∈ P and �⃗� ∈

∏︀
ℓ(𝑝)≤𝑖≤𝑘 𝐴

𝑝
𝑖

(𝑝↷�⃗�) ↾ 𝛼 = (𝑝 ↾ 𝛼)↷⟨𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼)(𝜈𝑖) | ℓ(𝑝) ≤ 𝑖 ≤ 𝑘⟩,

where 𝑝↷�⃗� is the weakest extension of 𝑝 using �⃗�. □

With the above results at hand we can define the Mitchell-like Extender
Based Prikry forcing (MEBPF) M as follows:

Definition 2.6. A condition in M is a pair (𝑝, 𝑐) where 𝑝 ∈ P, 𝑐 is a function
with dom(𝑐) ∈ [ℛ]≤𝜅 and for each 𝛼 ∈ dom(𝑐) the following hold:

(1) 𝑐(𝛼) : [
∏︀

𝑛≥ℓ(𝑝) 𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼)“𝐴
𝑝
𝑛]<𝜔 → 𝑉 P↾𝛼;1

1More verbosely, dom(𝑐(𝛼)) consists of finite sequences �⃗� = ⟨𝜋ℓ(𝑝), . . . , 𝜋𝑘⟩ in the prod-

uct of the measure one sets of 𝑝 and its outcome 𝑐(𝛼, �⃗�) is a P ↾ 𝛼-name.
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(2) 1l ⊩P↾𝛼 “𝑐(𝛼, �⃗�) ∈ ˙Add(𝜅+, 1)”, for all �⃗� ∈ dom(𝑐(𝛼));
(3) (𝑝 ↾ 𝛼)↷�⃗� ⊩P↾𝛼 𝑐(𝛼, �⃗�) ≤ 𝑐(𝛼, �⃗�), for all �⃗� ⊑ �⃗� in dom(𝑐(𝛼)).

Given (𝑝, 𝑐), (𝑞, 𝑑) ∈ M we write (𝑝, 𝑐) ≤* (𝑞, 𝑑) if and only if:

(I) 𝑝 ≤* 𝑞;
(II) dom(𝑐) ⊇ dom(𝑑);
(III) for 𝛼 ∈ dom(𝑑) and �⃗� = ⟨𝜋ℓ, . . . , 𝜋𝑘⟩ ∈

∏︀
ℓ≤𝑖≤𝑘 𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼)“𝐴

𝑝
𝑖 ,

(𝑝 ↾ 𝛼)↷�⃗� ⊩P↾𝛼 “𝑐(𝛼, �⃗�) ≤ 𝑑(𝛼, ⟨𝜋mc(𝑎𝑝𝑖∩𝛼),mc(𝑎𝑞𝑖∩𝛼)(𝜋𝑖) | ℓ ≤ 𝑖 ≤ 𝑘⟩)”.

Remark 2.7. It is routine to check that clause (III) above is well-defined.
This is a consequence of 𝑝 ≤* 𝑞 and the commutativity of the projections
associated to the EBPF. The idea behind M is the following. As usual, the
EBPF-part (incarnated by 𝑝) contributes to generating an initial segment
�⃗� := ⟨𝜈ℓ(𝑝), . . . 𝜈𝑘⟩ of one of the eventual EBPF-generics. This �⃗� guides the

Cohen part (represented by 𝑐) to collapse all 𝑉 -regular cardinals in (𝜅+, 𝜆).

Let us now define the 𝑛-point extensions:

Definition 2.8. Let (𝑝, 𝑐) ∈ M and 𝜈 ∈ 𝐴𝑝
ℓ . Denote (𝑝, 𝑐)↷𝜈 := (𝑝↷𝜈, 𝑐↷𝜈)

where 𝑐↷𝜈 is the function defined as follows:

(1) dom(𝑐↷𝜈) := dom(𝑐);
(2) dom((𝑐↷𝜈)(𝛼)) is the collection of all ⟨𝜋ℓ+1, . . . , 𝜋𝑘⟩ such that

⟨𝜋mc(𝑎𝑝ℓ ),mc(𝑎𝑝ℓ∩𝛼)
(𝜈)⟩⌢⟨𝜋ℓ+1, . . . , 𝜋𝑘⟩ ∈ dom(𝑐(𝛼));

(3) for each �⃗� = ⟨𝜋ℓ+1, . . . , 𝜋𝑘⟩ ∈ dom((𝑐↷𝜈)(𝛼)),

(𝑐↷𝜈)(𝛼, �⃗�) := 𝑐(𝛼, ⟨𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼)(𝜈)⟩
⌢⟨𝜋ℓ+1, . . . , 𝜋𝑘⟩).

In general, one defines (𝑝, 𝑐)↷�⃗� by recursion on the length of �⃗�. More ex-
plicitly, (𝑝, 𝑐)↷�⃗� := (𝑝↷�⃗�, 𝑐↷�⃗�) where for each ⟨𝜋|�⃗�|+1, . . . , 𝜋𝑘⟩,

(𝑐↷�⃗�)(𝛼, �⃗�) := 𝑐(𝛼, ⟨𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼)(𝜈𝑖) | ℓ ≤ 𝑖 ≤ |�⃗�|⟩⌢⟨𝜋|�⃗�|+1, . . . , 𝜋𝑘⟩).

Remark 2.9. Roughly speaking, 𝑐↷𝜈 is the shift of 𝑐 by 𝜈. Namely, 𝑐↷𝜈 is
the natural restriction of 𝑐 where the ℓ-entry is fixed to be the projections of
the Prikry point �⃗�. In general, 𝑐↷�⃗� is the natural restriction of 𝑐 where the
first |�⃗�|-many coordinates are fixed to be projections of �⃗�. Using Lemma 2.5
and the definition of M it is routine to check that (𝑝, 𝑐)↷�⃗� is a condition.

Finally, let us define the order ≤ of M :

Definition 2.10. Given (𝑝, 𝑐), (𝑞, 𝑑) ∈ M let us write (𝑝, 𝑐) ≤ (𝑞, 𝑑) if there
is a sequence �⃗� ∈

∏︀
ℓ(𝑞)≤𝑖≤ℓ(𝑝)𝐴

𝑞
𝑖 such that (𝑝, 𝑐) ≤* (𝑞, 𝑑)↷�⃗�.

Next, we prove the main properties of M. We will show that M has the
Complete Prikry Property (see [PRS22, §2]), analyze the cardinal structure,
and finally prove that M projects to M ↾ 𝛼.2

2In analogy with P↾𝛼, M↾𝛼 denotes the poset defined as M but using P↾𝛼 as EBPF-part
members and Cohen-parts 𝑐 restricted to ordinals in ℛ∩ 𝛼.
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2.2. Prikry property. For the next lemma, recall the definition of prop-
erty 𝒟 from [PRS22, Definition 2.12].

Lemma 2.11. M has property 𝒟.

Proof. Let 𝑎 = (𝑝, 𝑐) ∈ M, 𝑛 < 𝜔 and �⃗� = ⟨�⃗�𝛼 | 𝛼 < 𝜅ℓ(𝑝)+𝑛−1⟩ be an
injective enumeration of the product of the first 𝑛-many measure one sets of
𝑝. Our aim is to show that I has a winning strategy in the diagonalizability
game ⅁M(𝑎, �⃗�). For simplicity, let us provide details just when 𝑛 = 1. Write
ℓ := ℓ(𝑝). At the beginning, I plays 𝑎0 := 𝑎 and, in response, II plays some
(𝑞0, 𝑑0) := 𝑏0 ≤* 𝑎0

↷�⃗�0. In the next round, I plays a pair 𝑎1 := (𝑝1, 𝑐1) ≤* 𝑎0
attempting to diagonalize 𝑏0. More explicitly,

𝑝1 := ⟨𝑓 𝑞00 , . . . , 𝑓
𝑞0
ℓ−1, (𝑎

𝑝
ℓ , 𝐴

𝑝
ℓ , 𝑓

𝑞0
ℓ ∖ 𝑎𝑝ℓ )), (𝑎

𝑞0
ℓ+1, 𝐴

𝑞0
ℓ+1, 𝑓

𝑞0
ℓ+1), . . . ⟩,

and 𝑐1 is a function with

∙ dom(𝑐1) := dom(𝑑0);
∙ dom(𝑐1(𝛼)) := [

∏︀
𝑖≥ℓ 𝜋mc(𝑎

𝑝1
𝑖 ),mc(𝑎

𝑝1
𝑖 ∩𝛼))“𝐴

𝑝1
𝑖 ]<𝜔,

∙ Fix �⃗� = ⟨𝜋ℓ, · · · , 𝜋𝑘⟩ ∈ dom(𝑐1(𝛼)).

If |�⃗�| ≥ 2 and 𝜋ℓ = 𝜋mc(𝑎𝑝ℓ ),mc(𝑎𝑝ℓ∩𝛼)
(𝜈0), set:

𝑐1(𝛼, �⃗�) := 𝑑0(𝛼, ⟨𝜋ℓ+1, · · · , 𝜋𝑘⟩).
Otherwise,

𝑐1(𝛼, �⃗�) :=

{︃
𝑐0(𝛼, ⟨𝜋mc(𝑎

𝑝1
𝑖 ∩𝛼),mc(𝑎𝑝𝑖∩𝛼))

(𝜋𝑖) | 𝑖 ∈ [ℓ, 𝑘]⟩), if 𝛼 ∈ dom(𝑐0);

{(∅̌, 1lP↾𝛼)}, otherwise.

Claim 2.11.1. (𝑝1, 𝑐1) ∈ M, (𝑝1, 𝑐1) ≤* (𝑝0, 𝑐0) and (𝑝1, 𝑐1)
↷𝜈0 = 𝑏0.

Proof of claim. Clearly, (𝑝1, 𝑐1)
↷𝜈0 = 𝑏0. To see that (𝑝1, 𝑐1) ∈ M, it suffices

to check that 𝑐1 is well-defined and increasing when more Prikry points are
chosen (see (2) and (3) of Definition 2.6). Clause (2) is fairly easy to verify.
As for Clause (3) we argue as follows: Fix �⃗� ⊏ �⃗� in dom(𝑐1(𝛼)).

Case 𝛼 ∈ dom(𝑑0) ∖ dom(𝑐0): If �⃗� witnesses the property of the first case

then so does �⃗�. In that scenario, (𝑝1 ↾ 𝛼)↷�⃗� = (𝑞0 ↾ 𝛼)↷⟨𝜋ℓ+1, . . . , 𝜋𝑘⟩
(and similarly for �⃗�). Thus, (𝑝1 ↾ 𝛼)↷�⃗� ⊩P↾𝛼 “𝑑0(𝛼, �⃗� ∖ ℓ) ≤ 𝑑0(𝛼, �⃗� ∖ ℓ)”
because (𝑞0, 𝑑0) is a condition. In case |�⃗�| = 1 but 𝜋ℓ = 𝜋mc(𝑎𝑝ℓ ),mc(𝑎𝑝ℓ∩𝛼)

(𝜈0)

it follows that (𝑝1 ↾ 𝛼)↷�⃗� = (𝑞0 ↾ 𝛼)↷⟨𝜎ℓ+1, . . . , 𝜎𝑘⟩ and clearly this forces
𝑑0(𝛼, ⟨𝜎ℓ+1, . . . , 𝜎𝑘⟩) ≤ {⟨∅̌, 1lP↾𝛼⟩}. In other case we fall into the second
alternative and the desired property holds.

Case 𝛼 ∈ dom(𝑐0): If �⃗� is as in the first alternative one can argue as before

that (𝑝1 ↾ 𝛼)↷𝜎 forces 𝑐1(𝛼, �⃗�) ≤ 𝑐1(𝛼, �⃗�). Also, if 𝜋ℓ ̸= 𝜋mc(𝑎𝑝ℓ ),mc(𝑎𝑝ℓ∩𝛼)
(𝜈0)

then both �⃗� and �⃗� fall into the second alternative and one can use that
(𝑝1 ↾𝛼)↷�⃗� ≤ (𝑝0 ↾𝛼)↷⟨𝜋mc(𝑎

𝑝1
𝑖 ∩𝛼),mc(𝑎𝑝𝑖∩𝛼)

(𝜎𝑖) | ℓ ≤ 𝑖 ≤ 𝑘⟩ and that (𝑝0, 𝑐0) ∈
M to infer the desired property. So, we are left with the case where |�⃗�| = 1
and 𝜋ℓ = 𝜋mc(𝑎𝑝ℓ ),mc(𝑎𝑝ℓ∩𝛼)

(𝜈0). In that scenario

𝑐1(𝛼, 𝜋ℓ) = 𝑐0(𝛼, 𝜋ℓ) and 𝑐1(𝛼, �⃗�) = 𝑑0(𝛼, ⟨𝜎ℓ+1, . . . , 𝜎𝑘+1⟩).
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The proof will be completed once we check that

(⋆) (𝑝1 ↾ 𝛼)
↷�⃗� ⊩P↾𝛼 𝑑0(𝛼, ⟨𝜎ℓ+1, . . . , 𝜎𝑘⟩) ≤ 𝑐0(𝛼, 𝜋ℓ).

Recall that (𝑞0, 𝑑0) ≤* (𝑝0, 𝑐0)
↷𝜈0, which by definition implies

(𝑞0↾𝛼)
↷(�⃗�∖ℓ) ⊩P↾𝛼 𝑑0(𝛼, �⃗�∖ℓ) ≤ 𝑐0(𝛼, ⟨𝜋ℓ⟩⌢⟨𝜋mc(𝑎

𝑞0
𝑖 ∩𝛼),mc(𝑎𝑝𝑖∩𝛼)

(𝜎𝑖) | 𝑖 ≥ ℓ+1⟩).3

Since (𝑞0 ↾ 𝛼)↷(�⃗� ∖ ℓ) ≤ (𝑝0 ↾ 𝛼)↷⟨𝜋mc(𝑎
𝑝1
𝑖 ∩𝛼),mc(𝑎𝑝𝑖∩𝛼)

(𝜎𝑖) | 𝑖 ≥ ℓ+ 1⟩,

(𝑞0↾𝛼)
↷(�⃗�∖ℓ) ⊩P↾𝛼 𝑐0(𝛼, ⟨𝜋ℓ⟩⌢⟨𝜋mc(𝑎

𝑞0
𝑖 ∩𝛼),mc(𝑎𝑝𝑖∩𝛼)

(𝜎𝑖) | 𝑖 ≥ ℓ+1⟩) ≤ 𝑐0(𝛼, 𝜋ℓ)

because (𝑝0, 𝑐0) was a condition. All in all, as (𝑝1 ↾𝛼)↷�⃗� = (𝑞0 ↾𝛼)↷(�⃗� ∖ ℓ),
the last two expressions together imply that (⋆) holds. The above arguments
also show that (𝑝1, 𝑐1) ≤* (𝑝0, 𝑐0). □

After defining 𝑎1 := (𝑝1, 𝑐1), II plays in response 𝑏1 ≤* (𝑝1, 𝑐1)
↷𝜈1. In

general, suppose that ⟨(𝑎𝜉, 𝑏𝜉) | 𝜉 < 𝜁⟩, 𝜁 ≤ 𝜅𝑙, has been formed according
to the rules of ⅁M(𝑎, �⃗�). If 𝜁 = 𝜉 + 1 then let I play 𝑎𝜁 = (𝑝𝜁 , 𝑐𝜁) where

𝑝𝜁 := ⟨𝑓 𝑞𝜉0 , . . . , 𝑓
𝑞𝜉
ℓ−1, (𝑎

𝑝
ℓ , 𝐴

𝑝
ℓ , 𝑓

𝑞𝜉
ℓ ∖ 𝑎𝑝ℓ )), (𝑎

𝑞𝜉
ℓ+1, 𝐴

𝑞𝜉
ℓ+1, 𝑓

𝑞𝜉
ℓ+1), . . . ⟩,

and 𝑐𝜁 is defined as 𝑐1 but using (𝑎𝜉, 𝑏𝜉) instead of (𝑎0, 𝑏0). Arguing as in
the previous claim one shows that 𝑎𝜁 := (𝑝𝜁 , 𝑐𝜁) ∈ M and that 𝑎𝜁

↷𝜈𝜉 = 𝑏𝜉.
Otherwise,

𝑝𝜁 := ⟨
⋃︀

𝜉<𝜁 𝑓
𝑞𝜉
0 , . . . ,

⋃︀
𝜉<𝜁 𝑓

𝑞𝜉
ℓ−1, (𝑎

𝑝
ℓ , 𝐴

𝑝
ℓ , (

⋃︀
𝜉<𝜁 𝑓

𝑞𝜉
ℓ )∖𝑎𝑝ℓ )), (𝑎

𝑝𝜁
ℓ+1, 𝐴

𝑝𝜁
ℓ+1, 𝑓

𝑝𝜁
ℓ+1), . . . ⟩,

where the (𝑎
𝑝𝜁
ℓ+1, 𝐴

𝑝𝜁
ℓ+1, 𝑓

𝑝𝜁
ℓ+1)’s are the result of taking ≤*-lower bounds on

the sequence ⟨𝑞𝜉 ∖ ℓ | 𝜁 < 𝜉⟩.4 Next, define 𝑐𝜁 as the function with:

∙ dom(𝑐𝜁) :=
⋃︀

𝜉<𝜁 dom(𝑐𝜉),

∙ dom(𝑐𝜁(𝛼)) := [
∏︀

𝑖≥ℓ 𝜋mc(𝑎
𝑝𝜁
𝑖 ),mc(𝑎

𝑝𝜁
𝑖 ∩𝛼)“𝐴

𝑝𝜁
𝑖 ]<𝜔,

Let 𝛼 ∈ dom(𝑐𝜉) and denote by Λ𝛼 the collection of all 𝜉 < 𝜁 such that
𝛼 ∈ dom(𝑐𝜉). Let �⃗� = ⟨𝜋ℓ, . . . , 𝜋𝑘⟩ in dom(𝑐𝜁(𝛼)). To ease notations put

�⃗�𝜉,𝛼 := ⟨𝜋
mc(𝑎

𝑝𝜁
𝑖 ∩𝛼),mc(𝑎

𝑝𝜉
𝑖 ∩𝛼)(𝜋𝑖) | ℓ ≤ 𝑖 ≤ 𝑘⟩.

For each 𝜉 < 𝜂 in Λ𝛼 we have, by construction,

(𝑝𝜁 ↾ 𝛼)
↷�⃗� ≤* (𝑝𝜂 ↾ 𝛼)

↷�⃗�𝜂,𝛼 ≤* (𝑝𝜉 ↾ 𝛼)
↷�⃗�𝜉,𝛼

and

(𝑝𝜂 ↾ 𝛼)
↷�⃗�𝜂,𝛼 ⊩P↾𝛼 “⟨𝑐𝜉(𝛼, �⃗�𝜉,𝛼) | 𝜉 ∈ Λ𝛼 ∩ 𝜂⟩ is ≤ ˙Add(𝜅+,1)-decreasing”.

So, let 𝑐𝜁(𝛼, �⃗�) is a P ↾ 𝛼-name for⋀︁
{𝑐𝜉(𝛼, �⃗�𝜉,𝛼) | 𝜉 ∈ Λ𝛼};

namely, a lower bound for the displayed sequence, as forced by (𝑝𝜁 ↾ 𝛼)↷�⃗�.

3Note that here we used 𝜋mc(𝑎
𝑝
ℓ
),mc(𝑎

𝑝
ℓ
∩𝛼)(𝜈0) = 𝜋ℓ.

4Such lower bounds exists because 𝜁 < 𝜅ℓ+1.
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Then, we have that

(𝑝𝜁 ↾ 𝛼)
↷�⃗� ⊩P↾𝛼 ∀𝜉 ∈ Λ𝛼 (𝑐𝜁(𝛼, �⃗�) ≤ ˙Add(𝜅+,1) 𝑐𝜉(𝛼, �⃗�𝜉,𝛼)),

By tweaking 𝑐𝜁(𝛼, �⃗�) a bit we can moreover assume that it is a P↾𝛼-name

for a member of ˙Add(𝜅+, 1) as forced by the trivial condition. In a similar
spirit, given �⃗� ⊑ �⃗� in dom(𝑐𝜁(𝛼)), one can argue that

(𝑝𝜁 ↾ 𝛼)
↷�⃗� ⊩P↾𝛼 𝑐𝜁(𝛼, �⃗�) ≤ 𝑐𝜉(𝛼, �⃗�𝜉,𝛼).

Claim 2.11.2. (𝑝𝜁 , 𝑐𝜁) ∈ M, (𝑝𝜁 , 𝑐𝜁) ≤* (𝑝𝜉, 𝑐𝜉) and (𝑝𝜁 , 𝑐𝜁)
↷𝜈𝜉 ≤* 𝑏𝜉.

Proof of claim. The first claim is obvious attending to our previous con-
siderations. The claim that (𝑝𝜁 , 𝑐𝜁)

↷𝜈𝜉 ≤* 𝑏𝜉 follows from our inductive
assumption; in effect, (𝑝𝜁 , 𝑐𝜁)

↷𝜈𝜉 ≤* (𝑝𝜉+1, 𝑐𝜉+1)
↷𝜈𝜉 ≤* 𝑏𝜉. □

The above defines the 𝜁th-move of I, 𝑎𝜁 := (𝑝𝜁 , 𝑐𝜁) for 𝜁 ≤ 𝜅𝑙. Letting II
play some 𝑏𝜁 ≤* 𝑎𝜁

↷𝜈𝜁 for 𝜁 < 𝜅𝑙 yields a sequence ⟨(𝑎𝜁 , 𝑏𝜁) | 𝜁 < 𝜅ℓ⟩.
To show that ⟨𝑏𝜁 | 𝜁 < 𝜅ℓ⟩ is diagonalizable, let 𝑎′ := (𝑝𝜅ℓ

, 𝑐𝜅ℓ
). Then

𝑎′ ≤* 𝑎 and 𝑎′↷𝜈𝜁 ≤* 𝑎𝜁+1
↷𝜈𝜁 = 𝑏𝜁 for all 𝜁 < 𝜅ℓ. This shows that I has a

winning strategy in ⅁M(𝑎, �⃗�), as wished. □

Lemma 2.12. M has the Complete Prikry Property.

Proof. Fix 𝑎 = (𝑝, 𝑐) ∈ M, 𝑛 < 𝜔 and 𝑈 a ≤*-open subset of M, i.e. if 𝑏 ∈ 𝑈
and 𝑏′ ≤* 𝑏, then 𝑏′ ∈ 𝑈 . We will find 𝑎′ ≤* 𝑎 with the following property:
either every 𝑏 ≤ 𝑎 with length ℓ(𝑎) + 𝑛 is in 𝑈 or all of them avoid 𝑈 . For
simplicity, assume ℓ(𝑎) = 0. The general case is analogous.

Claim 2.12.1. There is 𝑎0 ≤* 𝑎 such that, for every 𝑏 ≤ 𝑎0 with ℓ(𝑏) = 𝑛,
if 𝑏 ∈ 𝑈 then 𝑎0

↷�⃗� ∈ 𝑈 , where �⃗� is the unique such that 𝑏 ≤* 𝑎0
↷�⃗�.

Proof of claim. Let �⃗� = ⟨�⃗�𝜉 | 𝜉 < 𝜅𝑛⟩ be an injective enumeration of
∏︀

𝑖≤𝑛𝐴
𝑝
𝑖

(i.e., of the 𝑛-point extensions of 𝑎). Let us play the game ⅁M(𝑎, �⃗�) but this
time restricting the moves of II to 𝑈 when this choice is possible. Specif-
ically, let us define by induction a sequence ⟨(𝑎𝜉, 𝑏𝜉) | 𝜉 < 𝜅𝑛⟩ ⊆ M with
𝑎𝜉 ≤* 𝑎 and 𝑏𝜉 ≤* 𝑎𝜉

↷�⃗�𝜉 and if there is 𝑏 ≤* 𝑎𝜉
↷�⃗�𝜉 in 𝑈 then II picks such

𝑏𝜉 ∈ 𝑈 ; otherwise, II chooses 𝑏𝜉 := 𝑎𝜉
↷�⃗�𝜉. By Lemma 2.11 there is 𝑎0 ≤* 𝑎

diagonalizing ⟨𝑏𝜉 | 𝜉 < 𝜅𝑛⟩.
We claim that 𝑎0 is as desired.5 Let 𝑏 ≤ 𝑎0 in 𝑈 with ℓ(𝑏) = 𝑛. By

definition, there is �⃗�𝜉 such that 𝑏 ≤* 𝑎0
↷�⃗�𝜉. Since 𝑎0 diagonalizes the 𝑏𝜉’s

we have that 𝑏 ≤* 𝑎𝜉
↷�⃗�𝜉. In particular, 𝑏𝜉 was chosen to be in 𝑈 . Since

𝑎0
↷�⃗�𝜉 ≤* 𝑏𝜉 ∈ 𝑈 it follows (by ≤*-openness) that 𝑎0

↷�⃗�𝜉 ∈ 𝑈 , as well. □

Let us now move to the Röwbottom part of the argument for the CPP.
Namely, we define 𝑏 ≤* 𝑎 such that 𝑏 = (𝑞, 𝑑) and

“∀�⃗� ∈
∏︀

𝑖<𝑛𝐴
𝑞
𝑖 (𝑏

↷�⃗� ∈ 𝑈)” or “∀�⃗� ∈
∏︀

𝑖<𝑛𝐴
𝑞
𝑖 (𝑏

↷�⃗� /∈ 𝑈)”.

We give details for when 𝑛 = 2 – this suffices to understand the general case.

5It is important for the forthcoming argument that the first 𝑛-many measure one sets
appearing in 𝑎0 are exactly

∏︀
𝑖≤𝑛 𝐴𝑝

𝑖 . This is exactly what the proof of Lemma 2.11 shows.
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For each 𝜈 ∈ 𝐴𝑎
0 define

𝐵0
𝜈 := {𝜂 ∈ 𝐴𝑝0

1 | 𝑎↷⟨𝜂, 𝜈⟩ ∈ 𝑈} and 𝐵1
𝜈 := 𝐴𝑝0

1 ∖𝐵0
𝜈 .

For each 𝜈 ∈ 𝐴𝑎
0 let 𝐵𝜈 be the unique of the above two sets which is 𝐸mc(𝑎

𝑝0
1 )-

large. Put 𝐵0 := {𝜈 ∈ 𝐴𝑎
0 | 𝐵𝜈 = 𝐵0

𝜈} and 𝐵1 := {𝜈 ∈ 𝐴𝑎
0 | 𝐵𝜈 = 𝐵1

𝜈}.
Let 𝐴0 be the unique of the above which is 𝐸mc(𝑎

𝑝0
0 )-large and define

𝐴1 :=
⋂︀

𝜈∈𝐴𝑎2
0
𝐵𝜈 , which is 𝐸mc(𝑎

𝑝0
1 )-large by completeness.

Define 𝑞 as 𝑝 but replacing the first two measure one sets by 𝐴0 and
𝐴1, respectively. Define 𝑑 with the same domain and values as 𝑐0 but the
�⃗� ∈ dom(𝑑(𝛼))’s are from the 𝛼th-projection of the measure one sets of
𝑞. □

Combining the CPP ofM (Lemma 2.12) with the following easy lemma we
infer that M has both the Strong Prikry Property and the Prikry Property.

Lemma 2.13. For each 𝑛 < 𝜔, the poset

M𝑛 := {(𝑝, 𝑐) ∈ M | ℓ(𝑝) = 𝑛}

is 𝜅𝑛-directed-closed.

Proof. Let 𝐷 ⊆ M𝑛 be a directed subset of conditions with |𝐷| < 𝜅𝑛. Let
𝑞 be a ≤*-lower bound for the EBPF-part of every (𝑝, 𝑐) ∈ 𝐷. Let 𝑐* be
the function defined similarly to 𝑐𝜁 in page 7. Namely, the domain of 𝑐*

is
⋃︀

(𝑝,𝑐)∈𝐷 dom(𝑐) and for each 𝛼, �⃗�, 𝑐*(𝛼, �⃗�) is obtained by taking lower

bounds of relevant 𝑐(𝛼, �⃗�), where (𝑝, 𝑐) ∈ 𝐷. As argued in Claim 2.11.2,
(𝑞, 𝑐*) ∈ M. Clearly it defines a ≤*-lower bound for the conditions in 𝐷. □

Corollary 2.14.

(1) M has the Prikry Property; namely, for every sentence 𝜙 in the
forcing language of M and every 𝑎 ∈ M there is 𝑏 ≤* 𝑎 deciding 𝜙.

(2) M has the Strong Prikry Property; namely, for every 𝑎 ∈ M and
𝐷 ⊆ M dense open there is 𝑛 < 𝜔 and 𝑏 ≤* 𝑎 such that every 𝑐 ≤ 𝑏
with ℓ(𝑐) ≥ ℓ(𝑏) + 𝑛 is in 𝐷.

2.3. Cardinal structure. Let us now analyze the cardinal structure of 𝑉 M.

Lemma 2.15. Forcing with M preserves all cardinals ≤ 𝜅+.

Proof. The preservation of cardinals ≤ 𝜅 follows from Corollary 2.14(1) and
Lemma 2.13. Similarly, the prerservation of 𝜅+ can be established using
Corollary 2.14(2) and the fact that |{(𝑝, 𝑐)↷�⃗� | �⃗� ∈ [

∏︀
𝑛≥ℓ(𝑝)𝐴

𝑝
𝑛]<𝜔}| ≤ 𝜅 for

all (𝑝, 𝑐) ∈ M. The argument in both cases is standard, but further details
can be found in [PRS19, Lemma 2.10]. □

Lemma 2.16. Forcing with M collapses all 𝑉 -regular cardinals in (𝜅+, 𝜆).

Proof. Let 𝛼 ∈ (𝜅+, 𝜆) be a 𝑉 -regular cardinal and 𝐺 a M-generic filter over
𝑉 . Since M projects to P and this latter to P↾𝛼 we can respectively derive P
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and P ↾ 𝛼-generics �̄� and �̄�𝛼. Working in 𝑉 [𝐺] the putative 𝛼th-collapsing
function is defined as follows:

𝑐𝛼 :=
⋃︁

{𝑐(𝛼, �⃗� ↾ 𝛼)�̄�𝛼
| (𝑝, 𝑐) ∈ 𝐺, 𝛼 ∈ dom(𝑐), 𝑝↷�⃗� ∈ �̄�}, 6

where, as before, �⃗� ↾ 𝛼 := ⟨𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼)(𝜈𝑖) | ℓ(𝑝) ≤ 𝑖 ≤ |�⃗�|⟩.

Claim 2.16.1. 𝑐𝛼 is well-defined.

Proof. Let 𝑐(𝛼, �⃗� ↾𝛼)�̄�𝛼
and 𝑑(𝛼, �⃗� ↾𝛼)�̄�𝛼

be as above. These come with con-

ditions (𝑝, 𝑐), (𝑞, 𝑑) ∈ 𝐺 with 𝛼 ∈ dom(𝑐)∩dom(𝑑).7 Let (𝑟, 𝑒) ≤ (𝑝, 𝑐), (𝑞, 𝑑)
in 𝐺 with ℓ(𝑟) ≥ max{ℓ(𝑝↷�⃗�), ℓ(𝑞↷�⃗�)}. By definition, there are �⃗�, �⃗� such
that (𝑟, 𝑒) ≤* (𝑝, 𝑐)↷�⃗�, (𝑞, 𝑑)↷�⃗�. Clearly �⃗� ⊑ �⃗� and �⃗� ⊑ �⃗�.

Since 𝛼 ∈ dom(𝑒) the definition of the ≤*-order yields

(𝑟 ↾ 𝛼)↷�⃗� ⊩P↾𝛼 𝑒(𝛼, �⃗�) ≤ (𝑐↷�⃗�)(𝛼, �⃗� ↾ 𝛼),

for all �⃗� ∈ dom(𝑒(𝛼)). Here �⃗� ↾ 𝛼 is a shorthand for the sequence of projec-
tions of the 𝜋𝑖’s via 𝜋mc(𝑎𝑟𝑖∩𝛼),mc(𝑎𝑝𝑖∩𝛼). The above is equivalent to

(𝑟 ↾ 𝛼)↷�⃗� ⊩P↾𝛼 𝑒(𝛼, �⃗�) ≤ 𝑐(𝛼, �⃗� ↾ 𝛼⌢�⃗� ↾ 𝛼).

Notice that (𝑟 ↾ 𝛼)↷�⃗� also forces 𝑐(𝛼, �⃗� ↾ 𝛼⌢�⃗� ↾ 𝛼) ≤ 𝑐(𝛼, �⃗� ↾ 𝛼). Indeed,

(𝑟 ↾ 𝛼)↷�⃗� ≤ (𝑝 ↾ 𝛼)↷(�⃗� ↾ 𝛼⌢�⃗� ↾ 𝛼)

and the latter forces the desired inequality (by definition of M). Thereby,
(𝑟↾𝛼)↷�⃗� forces “𝑒(𝛼, �⃗�) ≤ 𝑐(𝛼, �⃗� ↾𝛼)”. By a similar argument, this condition
also forces “𝑒(𝛼, �⃗�) ≤ 𝑑(𝛼, �⃗� ↾ 𝛼)”. Since this happens for an arbitrary
�⃗� we may let one corresponding to the 𝛼th-projection of some �⃗� such that
𝑟↷�⃗� ∈ �̄�. In particular, (𝑟↾𝛼)↷�⃗� ∈ �̄�𝛼 and so 𝑐(𝛼, �⃗� ↾𝛼)�̄�𝛼

and 𝑑(𝛼, �⃗�↾𝛼)�̄�𝛼

are compatible conditions in Add(𝜅+, 1)𝑉 [�̄�𝛼]. □

Let 𝑓 := ⟨𝑓𝛽 | 𝛽 < 𝛼⟩ be an injective enumeration of 𝜅𝜅 in 𝑉 [�̄�𝛼]. Define
Φ: 𝛼→ 𝜅+ as Φ(𝛽) := 𝛾 where 𝛾 is the least ordinal <𝜅+ for which

𝑐𝛼(𝛾 + 𝜉) = 𝑓𝛽(𝜉), for all 𝜉 < 𝜅.

The above definition is run inside 𝑉 [𝐺]. If well-defined, Φ establishes an
injection between 𝛼 and 𝜅+. In particular, 𝛼 is collapsed to 𝜅+.8

Let us thus show that Φ is well-defined. For each 𝛽 < 𝛼 consider

𝐷𝛽 := {(𝑝, 𝑐) ∈ M/�̄� | ∃𝛾 < 𝜅+ ∀�⃗�, 𝜉 (𝑐(𝛼, �⃗�)�̄�𝛼
(𝛾 + 𝜉) = 𝑓𝛽(𝜉))}.

Claim 2.16.2. 𝐷𝛽 is dense in M/�̄�.

6By density, there is always (𝑝, 𝑐) ∈ 𝐺 with 𝛼 ∈ dom(𝑐). Thus, 𝑐𝛼 is not ∅.
7Note that, the notation �⃗� ↾ 𝛼 is imprecise in that it does not exhibit the dependence

on 𝑝. We warn our readers that during this proof �⃗� ↾ 𝛼 (resp. �⃗� ↾ 𝛼) is obtained using the
𝛼th projection associated to 𝑝 (resp. 𝑞).

8Recall that 𝜅+ is preserved by M.
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Proof of claim. Let (𝑝, 𝑐) ∈ M/�̄�. Without loss of generality, 𝛼 ∈ dom(𝑐).
The definition of the forcing (see Definition 2.6(2)) implies that 𝑐(𝛼, �⃗�)�̄�𝛼

∈
Add(𝜅+, 1)𝑉 [�̄�𝛼] for all �⃗� ∈ dom(𝑐(𝛼)). Working in 𝑉 [�̄�𝛼] let 𝛾 < 𝜅+ be

above sup�⃗�∈dom(𝑐(𝛼)) dom(𝑐(𝛼, �⃗�)�̄�𝛼
). This choice is possible because there

are at most 𝜅-many possible �⃗� and 𝜅+ is a regular cardinal in 𝑉 [�̄�𝛼]. Let
𝑐* := {⟨𝛾 + 𝜉, 𝑓𝛽(𝜉)⟩ | 𝜉 < 𝜅} and note that 𝑐* ∪ 𝑐(𝛼, �⃗�)�̄�𝛼

is a well-defined
condition in Add(𝜅+, 1)𝑉 [�̄�𝛼]. Moreover, adding 𝑐* to the 𝑐(𝛼, �⃗�)�̄�𝛼

does
not conflict with the requirement that the conditions increase with larger
�⃗� (Definition 2.6(3)). Let �̇�* be a P ↾ 𝛼-name such that (�̇�*)�̄�𝛼

= 𝑐*. By
modifying 𝑐* is necessary we may assume that

1l ⊩P↾𝛼 �̇�
* ∪ 𝑐(𝛼, �⃗�) ∈ ˙Add(𝜅+, 1).9

Let 𝑑 be the function with dom(𝑑) = dom(𝑐), dom(𝑑(𝛼)) = dom(𝑐(𝛼)) and
for each �⃗� ∈ dom(𝑐(𝛼)), 𝑑(𝛼, �⃗�) := �̇�*∪𝑐(𝛼, �⃗�). It is clear that (𝑝, 𝑑) ∈ M/�̄�,
(𝑝, 𝑑) ≤* (𝑝, 𝑐) and that it belongs to 𝐷𝛽. This shows that 𝐷𝛽 is dense. □

Since𝐺 is alsoM/�̄�-generic over 𝑉 [�̄�] we can let (𝑝, 𝑐) ∈ 𝐷𝛽∩𝐺. It follows
that for some 𝛾, 𝑐𝛼(𝛾 + 𝜉) = 𝑓𝛽(𝜉) for all 𝜉 < 𝜅. So Φ(𝛽) is defined. □

2.4. Chain condition. In this section we show that M does not collapse 𝜆.
This will be a consequence of the chain condition of M. Since we are aiming
for M to be the first step in an iteration á-la-Σ-Prikry we need to identify
a stronger property which is iterable:

Definition 2.17. We say that M is 𝜆-Knaster to <𝜆-Linked if for every
𝒳 ∈ [M]𝜆 there are 𝒴 ∈ [𝒳 ]𝜆, a regular cardinal 𝛿 < 𝜆 and a map

C : {(𝑝, 𝑐)↷�⃗� | (𝑝, 𝑐) ∈ 𝒴, �⃗� ∈
∏︀

ℓ(𝑝)≤𝑛≤𝑘 𝐴
𝑝
𝑛, 𝑘 ≥ ℓ(𝑝)} → 𝐻𝛿

such that the following holds:

(†) C((𝑝, 𝑐)↷�⃗�) = C((𝑞, 𝑑)↷�⃗�) ⇒ ∃(𝑟, 𝑑) ∈ M ((𝑟, 𝑑) ≤* (𝑝, 𝑐)↷�⃗�, (𝑞, 𝑑)↷�⃗�).

The idea behind the previous concept is the following. Given a collection
of 𝜆-many conditions 𝒳 in M one can shrink it to a set 𝒴 which admits
a compatibility function C. The fact that C is defined over the minimal
extensions of (𝑝, 𝑐) ∈ 𝒴 and not just on 𝒴 has to do with the iterability of
this property. For more details see the proof of Lemma 3.16. The rest of this
section will be devoted to show that, indeed, M is 𝜆-Knaster to <𝜆-Linked.

Lemma 2.18. If M is 𝜆-Knaster to <𝜆-Linked then it is 𝜆-Knaster.
In particular, if M is 𝜆-Knaster to <𝜆-Linked then it forces “𝜆 = 𝜅++”.

Proof. Let 𝒳 ∈ [M]𝜆 and use that M is 𝜆-Knaster to <𝜆-Linked to find
𝒴 ∈ [𝒳 ]𝜆 and a compatibility function C as above. Since Im(C) ⊆ 𝐻𝛿 and 𝜆
is inaccessible we can find 𝒵 ⊆ 𝒴 of size 𝜆 where C is constant. □

9For instance, by taking 𝜏 a P ↾ 𝛼-name forced by 𝑝 ↾ 𝛼 to be �̇�* and forced to be ∅ by
conditions that are incompatible with 𝑝 ↾ 𝛼.
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Definition 2.19. Let 𝛿 ∈ (𝜅, 𝜆) be inaccessible. For (𝑝, 𝑐) ∈ M ↾ 𝛿 define

c𝛿(𝑝, 𝑐) := ⟨𝑝↷�⃗�, 𝛼, 𝑐(𝛼, �⃗� ↾ 𝛼) | 𝛼 ∈ dom(𝑐), �⃗� ∈ [
∏︀

𝑛≥ℓ(𝑝)𝐴
𝑝
𝑛]<𝜔⟩,

where �⃗� ↾ 𝛼 := ⟨𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼)(𝜈𝑖) | ℓ ≤ 𝑖 ≤ 𝑘⟩.

Remark 2.20. c𝛿 has range in 𝐻𝛿. Indeed, 𝑝↷�⃗� ∈ 𝐻𝛿, dom(𝑐) ∈ [𝛿]≤𝜅 and
every P ↾ 𝛼-name 𝑐(𝛼, �⃗� ↾ 𝛼) can be coded inside 𝐻𝛿 because P ↾ 𝛼 ∈ 𝐻𝛿.

Lemma 2.21. M is 𝜆-Knaster to <𝜆-Linked.

Proof. Let {(𝑝𝜉, 𝑐𝜉) | 𝜉 < 𝜆} ⊆ M. Following Gitik [Git10, Lemma 2.15] one
may assume that for each 𝜉 < 𝜆 the following hold:

∙ ℓ(𝑝𝜉) = ℓ;

∙ 𝑓
𝑝𝜉
𝑛 ∪ 𝑓𝑝𝜁𝑛 is a function for all 𝑛 < 𝜔;

∙ for each 𝑛 ≥ ℓ, {dom(𝑓
𝑝𝜉
𝑛 )∪𝑎𝑝𝜉𝑛 | 𝜉 < 𝜆} forms a ∆-system with root

∆𝑛 satisfying that dom(𝑓
𝑝𝜉
𝑛 ) ∩ 𝑎𝑝𝜁𝑛 = ∅.

In addition, we may assume that

(1) for each 𝑛 ≥ ℓ and 𝜉 < 𝜆, 𝐴
𝑝𝜉
𝑛 = 𝐴𝑛,

(2) for each 𝑛 ≥ ℓ, {𝜋
mc(𝑎

𝑝𝜉
𝑛 ),* ↾ (∆𝑛 ∩ 𝑎

𝑝𝜉
𝑛 )×𝐴𝑛 | 𝜉 < 𝜆} is a singleton.10

Claim 2.21.1. For each 𝜉, 𝜁 < 𝜆, 𝑝𝜉 and 𝑝𝜁 are ≤*-compatible.
Moreover, for each �⃗� ∈ [

∏︀
ℓ≤𝑛𝐴𝑛]

<𝜔, 𝑝↷𝜉 �⃗� and 𝑝↷𝜁 �⃗� are ≤*-compatible.

Proof. The assertion that 𝑝𝜉 and 𝑝𝜁 are ≤*-compatible is immediate. For the
moreover claim note that the incompatibilities between 𝑝↷𝜉 �⃗� and 𝑝↷𝜁 �⃗� must

arise in the form of discrepancies between 𝜋
mc(𝑎

𝑝𝜉
𝑛 ),𝛿

(𝜈𝑛) and 𝜋
mc(𝑎

𝑝𝜁
𝑛 ),𝛿

(𝜈𝑛)

for 𝛿’s in ∆𝑛. However, these two values are the same by (2) above. □

For each 𝜉 < 𝜆, dom(𝑐𝜉) is a subset of 𝜆 of cardinality ≤𝜅. So, by
further shrinking the indexing set, we may assume that {dom(𝑐𝜉) | 𝜉 < 𝜆}
is a ∆-system; say, with root ∆. Let 𝛿 ∈ (𝜅, 𝜆) be an inaccessible cardinal
with ∆ ⊆ 𝛿. By the forthcoming Lemma 2.22, {(𝑝𝜉 ↾ 𝛿, 𝑐𝜉 ↾ 𝛿) | 𝛼 < 𝜆} are
conditions in M ↾ 𝛿. For each 𝛼 < 𝜆 define

C((𝑝𝜉, 𝑐𝜉)
↷�⃗�) := ⟨�⃗�, c𝛿(𝑝𝜉 ↾ 𝛿, 𝑐𝜉 ↾ 𝛿)⟩,

where c𝛿 is as in Definition 2.19. Clearly, C has range in 𝐻𝛿.

We claim that C satisfies equation (†) of Definition 2.17. Suppose that
C((𝑝𝜉, 𝑐𝜉)

↷�⃗�)) = C((𝑝𝜁 , 𝑐𝜁)
↷�⃗�)). Then �⃗� = �⃗� and by Claim 2.21.1 both 𝑝𝜉

↷�⃗�
and 𝑝𝜁

↷�⃗� are ≤*-compatible. Let 𝑟 be ≤*-stronger and 𝑑 be the function
with domain dom(𝑐𝜉) ∪ dom(𝑐𝜁) such that

∀�⃗� ∈ dom(𝑑(𝛼)) = [
∏︀

𝑛≥ℓ(𝑟) 𝜋mc(𝑎𝑟𝑛),mc(𝑎𝑟𝑛∩𝛼)“𝐴
𝑟
𝑛]

<𝜔,

for each 𝛼 ∈ dom(𝑑) ∖∆ (i.e., outside the common domain),

𝑑(𝛼, �⃗�) :=

{︃
(𝑐𝜉

↷�⃗�)(𝛼, �⃗�𝜉,𝛼), if 𝛼 ∈ dom(𝑐𝜉);

(𝑐𝜁
↷�⃗�)(𝛼, �⃗�𝜁,𝛼) if 𝛼 ∈ dom(𝑐𝜁).

10Here 𝜋
mc(𝑎

𝑝𝜉
𝑛 ),* denotes the map defined as (𝛿, 𝜈) ↦→ 𝜋

mc(𝑎
𝑝𝜉
𝑛 ),𝛿

(𝜈).
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If 𝛼 ∈ ∆, 𝑑(𝛼, �⃗�) := (𝑐𝜉
↷�⃗�)(𝛼, �⃗�𝜉,𝛼). Above we used the following notation:

�⃗�𝑥,𝛼 := ⟨𝜋mc(𝑎𝑟𝑖∩𝛼),mc(𝑎𝑝𝑥𝑖 ∩𝛼)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩ for 𝑥 ∈ {𝜉, 𝜁}.

Clearly (𝑟, 𝑑) is a condition in M and (𝑟, 𝑑) ≤* (𝑝𝜉, 𝑐𝜉)
↷�⃗�.

The reason for why (𝑟, 𝑑) is ≤*-stronger than (𝑝𝜁 , 𝑐𝜁)
↷�⃗� is that

(𝑐𝜉
↷�⃗�)(𝛼, �⃗�𝜉,𝛼) = (𝑐𝜁

↷�⃗�)(𝛼, �⃗�𝜁,𝛼)

whenever 𝛼 ∈ ∆.
To see this, fix �⃗� ∈ dom(𝑑(𝛼)) and let �⃗� be a preimage of it in the measure

one sets of 𝑟. Then,

(𝑟, 𝑑)↷�⃗� ≤* (𝑝𝜉, 𝑐𝜉)
↷�⃗�⌢�⃗�𝜉, (𝑝𝜁 , 𝑐𝜁)

↷�⃗�⌢�⃗�𝜁 ,

where �⃗�𝜉 (resp. �⃗�𝜁) is a shorthand for �⃗�𝜉,𝜆 (resp. �⃗�𝜁,𝜆). In particular,
the same holds when projecting down to 𝛿. Let �⃗�(𝜉), �⃗�(𝜉) be the sequence
defined by the projections

𝜋
mc(𝑎

𝑝𝜉
𝑖 ),mc(𝑎

𝑝𝜉
𝑖 ∩𝛿)(𝜈𝑖) and 𝜋mc(𝑎

𝑝𝜉
𝑖 ),mc(𝑎

𝑝𝜉
𝑖 ∩𝛿)(𝜎𝜉(𝑖)).

Define �⃗�(𝜁) and �⃗�(𝜁) similarly using the projections associated to 𝑝𝜁 .
Since c𝛿(𝑝𝜉 ↾ 𝛿, 𝑐𝜉 ↾ 𝛿) = c𝛿(𝑝𝜁 ↾ 𝛿, 𝑐𝜁 ↾ 𝛿) it follows, by Definition 2.19,

that (𝑝𝜉 ↾ 𝛿)↷⟨�⃗�(𝜉)⌢�⃗�(𝜉)⟩ = 𝑞, where 𝑞 is: 1) a minimal extension of 𝑝𝜁 ↾ 𝛿;
2) compatible with (𝑝𝜉 ↾ 𝛿)↷⟨�⃗�(𝜉)⌢�⃗�(𝜉)⟩; and 3), has the same length as

(𝑝𝜉 ↾ 𝛿)↷⟨�⃗�(𝜉)⌢�⃗�(𝜉)⟩. It must be the case that

(𝑝𝜉 ↾ 𝛿)
↷⟨�⃗�(𝜉)⌢�⃗�(𝜉)⟩ = (𝑝𝜁 ↾ 𝛿)

↷⟨�⃗�(𝜁)⌢�⃗�(𝜁)⟩.

Using again Definition 2.19 and the commutativity of the projections one
can check that (𝑐𝜉

↷�⃗�)(𝛼, �⃗�𝜉,𝛼) = (𝑐𝜁
↷�⃗�)(𝛼, �⃗�𝜁,𝛼). □

2.5. Projections. In this section we show that there is a natural projection
between M and M ↾ 𝛼 for all regular cardinals 𝛼 in [𝜅+, 𝜆) (i.e., 𝛼 ∈ ℛ).
This will be instrumental in our proof of the ineffable tree property at 𝜆.

Lemma 2.22. For each 𝛼 ∈ ℛ the map (𝑝, 𝑐) ↦→ (𝑝 ↾ 𝛼, 𝑐 ↾ 𝛼) defines a
length-preserving projection from M to M ↾ 𝛼.

Proof. First, note that 𝑐↾𝛼 has the right shape and thus (𝑝↾𝛼, 𝑐↾𝛼) ∈ M↾𝛼.
Indeed, this follows from commutativity of the projections; namely,

𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛽)“𝐴
𝑝
𝑖 = 𝜋mc(𝑎𝑝𝑖∩𝛼),mc(𝑎𝑝𝑖∩𝛽)“𝐴

𝑝↾𝛼
𝑖 .11

Suppose (𝑝, 𝑐) ≤ (𝑞, 𝑑) and let �⃗� be with (𝑝, 𝑐) ≤* (𝑞, 𝑑)↷�⃗�. We show that

(𝑝 ↾ 𝛼, 𝑐 ↾ 𝛼) ≤* (𝑞 ↾ 𝛼, 𝑑 ↾ 𝛼)↷⟨𝜋mc(𝑎𝑞𝑖 ),mc(𝑎𝑞𝑖∩𝛼)(𝜈𝑖) | 𝑖 ≤ |�⃗�|⟩.

For this it suffices to check that

(𝑝 ↾ 𝛽)↷�⃗� ⊩P↾𝛽 𝑐(𝛽, �⃗�) ≤ (𝑑↷�⃗�)(𝛽, ⟨𝜋mc(𝑎𝑝𝑖∩𝛽),mc(𝑎𝑞𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑝) ≤ 𝑖 ≤ 𝑘⟩)

11𝐴𝑝↾𝛼
𝑖 is by definition 𝜋mc(𝑎

𝑝
𝑖 ),mc(𝑎

𝑝
𝑖 ∩𝛼)“𝐴

𝑝
𝑖 .
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for all 𝛽 ∈ dom(𝑑)∩𝛼 and �⃗� ∈
∏︀

ℓ(𝑝)≤𝑖≤𝑘 𝜋mc(𝑎𝑝𝑖∩𝛼),mc(𝑎𝑝𝑖∩𝛽)“𝐴
𝑝↾𝛼
𝑖 . However,

this happens automatically. Indeed, it follows from (𝑝, 𝑐) ≤* (𝑞↷�⃗�, 𝑑↷�⃗�)
(see Clause (III) of Definition 2.6).

Let us finally check that the map is a projection. Let (𝑞, 𝑑) ≤ (𝑝 ↾𝛼, 𝑐 ↾𝛼)
in M ↾ 𝛼. First, let 𝑟 ≤ 𝑝 be such that 𝑟 ↾ 𝛼 ≤* 𝑞. Say �⃗� witnesses that
𝑟 ≤* 𝑝↷�⃗�. Define the Mitchell-part of 𝑟 as follows. Let 𝑒 be the function
with domain dom(𝑒) := dom(𝑑)∪(dom(𝑐)∖𝛼) such that for each 𝛽 ∈ dom(𝑒):

∙ dom(𝑒(𝛽)) := [
∏︀

𝑖≥ℓ(𝑟) 𝜋mc(𝑎𝑟𝑖 ),mc(𝑎𝑟𝑖∩𝛽)“𝐴
𝑟
𝑖 ]
<𝜔;

∙ for each �⃗� = ⟨𝜋ℓ(𝑟), . . . , 𝜋𝑘⟩ ∈ dom(𝑒(𝛽)),

𝑒(𝛽, �⃗�) :=

{︃
(𝑐↷�⃗�)(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩), if 𝛽 /∈ dom(𝑑);

𝑑(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑞𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩), if 𝛽 ∈ dom(𝑑).

It is clear that 1lP↾𝛽 forces 𝑒(𝛽, �⃗�) to be a condition in Add(𝜅+, 1) and that
𝑒(𝛽, �⃗�) becomes stronger with longer �⃗�’s. Namely, (𝑟, 𝑒) ∈ M.

Let us check that (𝑟, 𝑒) ≤ (𝑝, 𝑐) and that (𝑟 ↾ 𝛼, 𝑒 ↾ 𝛼) ≤* (𝑞, 𝑑). Look-
ing at Definition 2.6(III), the latter is pretty obvious. The former also
holds in that (𝑟, 𝑒) ≤* (𝑝, 𝑐)↷�⃗�. To see this, note that for 𝛽 ∈ dom(𝑐) ∖ 𝛼
the verification is obvious. For 𝛽 ∈ dom(𝑑) and �⃗� = ⟨𝜋ℓ(𝑟), . . . , 𝜋𝑘⟩ in∏︀

ℓ(𝑟)≤𝑖≤𝑘 𝜋mc(𝑎𝑟𝑖 ),mc(𝑎𝑟𝑖∩𝛽)“𝐴
𝑟
𝑖 we need to check that

(𝑟 ↾ 𝛽)↷�⃗� ⊩P↾𝛽 𝑒(𝛽, �⃗�) ≤ (𝑐↷�⃗�)(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩).

To argue this we will use that (𝑞, 𝑑) ≤ (𝑝 ↾ 𝛼, 𝑐 ↾ 𝛼). Let �⃗� be such that
(𝑞, 𝑑) ≤* (𝑝 ↾ 𝛼, 𝑐 ↾ 𝛼)↷�⃗�. Necessarily �⃗� = ⟨𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼)(𝜈𝑖) | 𝑖 < |�⃗�|⟩. By
definition we have that (𝑞 ↾ 𝛽)↷⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑞𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩ forces

𝑑(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑞𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩) ≤
((𝑐 ↾ 𝛼)↷�⃗�)(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩).

Since �⃗� and �⃗� project the same way below 𝛼 a moment of reflection makes
clear that ((𝑐 ↾ 𝛼)↷𝜎)(𝛽, ·) = (𝑐↷�⃗�)(𝛽, ·). Thus, the above condition forces

𝑑(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑞𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩) ≤
(𝑐↷�⃗�)(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩).

Since (𝑟 ↾ 𝛽)↷�⃗� ≤ (𝑞 ↾ 𝛽)↷⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑞𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩ it follows

that (𝑟 ↾ 𝛽)↷�⃗� ≤ (𝑞 ↾ 𝛽) forces the desired property. □

Let us close this section analyzing the subforcing of M where the Prikry
part is fixed. Formally, let 𝜋 be the natural projection between M and P;
namely, 𝜋 : (𝑝, 𝑐) ↦→ 𝑝. For each 𝑛 < 𝜔 let us denote by M𝜋

𝑛 the subforcing
of M𝑛 := {(𝑝, 𝑐) ∈ M | ℓ(𝑝) = 𝑛} endowed with the following order:

(𝑝, 𝑐) ≤𝜋 (𝑞, 𝑑) iff (𝑝, 𝑐) ≤* (𝑞, 𝑑) and 𝑝 = 𝑞.

Lemma 2.23. For each 𝑛 < 𝜔, M𝜋
𝑛 is 𝜅+-directed-closed.

Proof. Let 𝐷 ⊆ M𝜋
𝑛 be a ≤𝜋-directed set of conditions of size ≤𝜅. Let 𝑝 be

the common EBPF-part of conditions in 𝐷. Let 𝑐 be the function with
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∙ dom(𝑐) :=
⋃︀

(𝑝,𝑑)∈𝐷 dom(𝑑),

∙ dom(𝑐(𝛼)) := [
∏︀

𝑛≥ℓ(𝑝) 𝜋mc(𝑎𝑝𝑛),mc(𝑎𝑝𝑛∩𝛼“𝐴
𝑝
𝑛]<𝜔,

∙ 𝑐(𝛼, �⃗�) :=
⋀︀
{𝑑(𝛼, �⃗�) | 𝛼 ∈ dom(𝑑)},

where this lower bound is forced by (𝑝↾𝛼)↷�⃗� to be such. As usual, we tweak

𝑐(𝛼, �⃗�) a bit so that 1lP↾𝛼 forces it to be a condition ˙Add(𝜅+, 1). Clearly,
(𝑝, 𝑐) is a ≤𝜋-lower bound for 𝐷. □

2.6. Conclusion. With all the previous results at hand it is easy to verify
that M satisfies all the axioms of the Σ-Prikry framework (see [PRS22, §2])
with the only exception of the existence of a compatibility function 𝑐. Let
us call this family weak-Σ-Prikry. Remember that in the current scenario
the preservation of cardinals ≥𝜆 is handled by Lemma 2.21.

The following is a summary of the main properties of M.

Theorem 2.24. The following properties are true for M:

(1) M is weak-Σ-Prikry having property 𝒟;
(2) M forces 2𝜅 = 𝜆 and preserves cardinals except those in (𝜅+, 𝜆).
(3) For each 𝑉 -regular cardinal 𝛼 ∈ [𝜅+, 𝜆) the map (𝑝, 𝑐) ↦→ (𝑝↾𝛼, 𝑐↾𝛼)

defines a length-preserving projection from M to M ↾ 𝛼.
(4) M forces the following: Given ⟨𝑆𝑛 | 𝑛 ≤ 𝑚⟩ finitely-many stationary

subsets of {𝛼 < 𝜅+ | cf(𝛼)𝑉 ̸= 𝜔} there is 𝛼 < 𝜅+ with cf(𝛼) > 𝜔
such that each 𝑆𝑛 ∩ 𝛼 is stationary in 𝛼.

(5) M forces ITP(𝜆).

To establish (4) one needs each 𝜅𝑛 to be Laver-indestructible as in those
circumstances one can appeal to [PRS19, Corollary 5.10]. Similarly, (5)
requires 𝜆 to be supercompact (the proof of this latter fact is postponed to
§5 where a more general result is proved).

3. Killing a fragile stationary set

In this section we describe a forcing poset which given a weak-Σ-Prikry
forcing Q and a fragile stationary set �̇� returns a weak-Σ-Prikry forcing
A := A(Q, �̇� ) killing the stationarity of �̇� and projecting onto Q. The
above-mentioned poset A will be a variation of the Sharon of [PRS22]. The
modification we present here will secure the existence of projections from A
onto A ↾ 𝛼, for all 𝛼 ∈ [𝜅+, 𝜆) inaccessible. For simplicity, denote by ℛ′ the
set of all inaccessible cardinals in [𝜅+, 𝜆).

We present the arguments for a general Q to use the obtained results at
any successor stage of the eventual iteration. Thus, it is helpful to think of
Q as a stage of a Σ-Prikry-styled iteration starting with the poset M of §2.1.

Setup 3. We are given ⟨Q ↾ 𝛼 | 𝛼 ∈ ℐ⟩ and ⟨· ↾ 𝛼 | 𝛼 ∈ ℐ⟩ such that:

(1) ℐ ⊆ ℛ′ ∪ {𝜆} is co-bounded in 𝜆, with 𝜆 ∈ ℐ;
(2) Q ↾𝛼 is a weak-Σ-Prikry forcing having property 𝒟 and Q ↾𝛼 ⊆ 𝐻𝜆;
(3) Q ↾ 𝛼 is 𝜆-Knaster to <𝜆-Linked (see Definition 2.17);



16 POVEDA AND SINAPOVA

(4) Q ↾ 𝛼 projects to M ↾ 𝛼;
(5) · ↾𝛼 : Q → Q ↾𝛼 is a length-preserving projection, where Q := Q ↾𝜆;
(6) for each 𝑝 ∈ Q, for all large 𝛼 < 𝜆, 𝑝 = 𝑝 ↾ 𝛼.

Let 𝑟⋆ ∈ Q and �̇� be a Q-name for a 𝑟⋆-fragile stationary subset of 𝜅+

(Definition 6.1 in [PRS23]). By definition of fragility, for all 𝑞 ≤ 𝑟⋆,

𝑞 ⊩Qℓ(𝑞)
“�̇�ℓ(𝑞) is nonstationary”.

Thus, for each 𝑛 ≥ ℓ(𝑟*), let a Q𝑛-name �̇�𝑛 for a club subset of 𝜅+ such that

for all 𝑞 ≤ 𝑟⋆, 𝑞 ⊩Qℓ(𝑞)
�̇�ℓ(𝑞) ∩ �̇�ℓ(𝑞) = ∅. Using that Q is 𝜆-cc (Clause (3))

there is an inaccessible cardinal 𝛿 < 𝜆 such that �̇� and �̇�𝑛 are, respectively,
Q ↾ 𝛼 and (Q ↾ 𝛼)𝑛-names for all 𝛼 ∈ ℐ ∖ 𝛿.

For each 𝛼 ∈ ℐ ∖ 𝛿 define the following binary relation:

𝑅 ↾ 𝛼 := {(𝜚, 𝑞) ∈ 𝜇×Q ↾ 𝛼 | ∀𝑟 ≤Q↾𝛼 𝑞 ↾ 𝛼 (𝑟 ⊩(Q↾𝛼)ℓ(𝑟) 𝜚 ∈ �̇�ℓ(𝑟))}.

𝑅 ↾ 𝛼 is downwards closed; namely, for all (𝜚, 𝑞) ∈ 𝑅 ↾ 𝛼

𝑞′ ≤Q↾𝛼 𝑞 ⇒ (𝜚, 𝑞′) ∈ 𝑅 ↾ 𝛼.

As in [PRS23, §6], let us define a Q-name

�̇�+ := {(𝜚, 𝑝) | (𝜚, 𝑝) ∈ 𝜅+ ×Q ∧ ∀𝑞 ≤ 𝑝 (𝑞 ⊩Qℓ(𝑞)
𝜚 /∈ �̇�ℓ(𝑞))}.

By [PRS22, Lemma 4.6] the trivial condition of Q forces �̇� ⊆ �̇�+ (hence �̇�+

is stationary) and if (𝜚, 𝑞) ∈ 𝑅 ↾ 𝜆 then 𝑞 ⊩Q 𝜚 /∈ �̇�+. Also, by 𝜆-ccness of

Q, the Q-name �̇�+ can be identified with a Q ↾ 𝛼-name, for all large 𝛼 < 𝜆.
Thus, if (𝜚, 𝑞) ∈ 𝑅 ↾ 𝛼 then 𝑞 ⊩Q↾𝛼 𝜚 /∈ �̇�+. By shrinking ℐ ∖ 𝛿 we ensure
this configuration holds for every 𝛼 ∈ ℐ ∖ 𝛿. Denote 𝒥 := ℐ ∖ 𝛿.

Notation 3.1. Given 𝑝 ∈ Q we denote by 𝐴𝑝
𝑖 ’s the measure one sets of the

EBPF-part of 𝑝 – denote this latter EBPF(𝑝). Note that this makes sense
because Q projects to M (Clause (4)) which certainly has an EBPF-part.

For �⃗� ∈
∏︀

ℓ(𝑝)≤𝑖≤𝑘 𝐴
𝑝
𝑖 , we denote by 𝑝

↷�⃗� the weakest extension of 𝑝 whose

EBPF-part is given by EBPF(𝑝)↷�⃗�. We also denote the corresponding EBPF-
projections by 𝜋mc(𝑎𝑝𝑖 ),mc(𝑎𝑝𝑖∩𝛼).

Definition 3.2. Let 𝑝 ∈ Q. A function 𝑆 is a 𝒥 -𝑝-labeled tree if dom(𝑆) ∈
[𝒥 ]≤𝜅 and for each 𝛼 ∈ 𝒥 the following hold:

(1) 𝑆(𝛼) : dom(𝑆(𝛼)) → {𝐶 ⊆ 𝜅+ | 𝐶 closed and bounded} where

dom(𝑆(𝛼)) := {⟨�⃗�, 𝑡⟩ | �⃗� ∈
∏︀

ℓ(𝑝)≤𝑛≤𝑘 𝜋mc(𝑎𝑝𝑖 )mc(𝑎𝑝𝑖∩𝛼)“𝐴
𝑝
𝑖 }.

(2) for all �⃗� ∈ dom(𝑆(𝛼)),

𝑝 ↾ 𝛼↷�⃗� ⊩Q↾𝛼 𝑆(𝛼, �⃗�) ∩ �̇�+ = ∅.

(3) if �⃗�, �⃗� ∈ dom(𝑆(𝛼)) and 𝑝 ↾ 𝛼↷�⃗� ≤ 𝑝 ↾ 𝛼↷�⃗� then

𝑆(𝛼, �⃗�) ⊆ 𝑆(𝛼, �⃗�).
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(4) there is 𝑚(𝑆) < 𝜔, called the delay for 𝑆, such that, for each 𝛼 ∈
𝒥 , if 𝑝 ↾ 𝛼↷�⃗� ≤ 𝑝 ↾ 𝛼↷�⃗� and ℓ(𝑝 ↾ 𝛼↷�⃗�) ≥ ℓ(𝑝 ↾ 𝛼) + 𝑚(𝑆) then
(max(𝑆(𝛼, �⃗�)), 𝑝 ↾ 𝛼↷�⃗�) ∈ 𝑅 ↾ 𝛼.

Remark 3.3. For each 𝛼 ∈ 𝒥 , 𝑆(𝛼, ·) is a 𝑝 ↾ 𝛼-labeled tree in the sense of
[PRS22] with respect to the binary relation 𝑅 ↾ 𝛼. Therefore, the above is
just a multidimensional version of the notion considered in [PRS22], with a
uniform delay. The common delay will help us define the type map in Defini-
tion 3.19, which is needed to get the Prikry property of A. The requirement
dom(𝑆) ∈ [𝒥 ]≤𝜅 is used in Lemma 3.8 and Fact 3.21.

Definition 3.4. A sequence �⃗� = ⟨𝑆𝑖 | 𝑖 ≤ 𝛾�⃗�⟩ of 𝒥 -𝑝-labeled trees is called

a 𝒥 -𝑝-strategy if 𝛾�⃗� < 𝜅+, dom(𝑆𝑖) = dom(𝑆0) for all 𝑖 ≤ 𝛾�⃗� , and for each

𝛼 ∈ dom(𝑆0), �⃗�(𝛼) := ⟨𝑆𝑖(𝛼) | 𝑖 ≤ 𝛾�⃗�⟩ is a 𝑝 ↾ 𝛼-strategy in the sense of
[PRS22].

Let us now present our new Sharon-like poset:

Definition 3.5. For each 𝛼 ∈ 𝒥 , let A ↾ 𝛼 := A(Q ↾ 𝛼,𝒥 ∩ 𝛼+, �̇�+) be the

poset consisting of pairs (𝑝, �⃗�) such that the following hold:

(1) 𝑝 ∈ Q ↾ 𝛼;
(2) �⃗� is either empty or a (𝒥 ∩ 𝛼+)-𝑝 ↾ 𝛼-strategy.

Write (𝑞, �⃗�) ≤ (𝑝, �⃗�) if and only if 𝑞 ≤ 𝑝, 𝛾�⃗� ≥ 𝛾�⃗� , dom(𝑆0) ⊆ dom(𝑄0)

and for each 𝑖 ≤ 𝛾�⃗� , 𝛽 ∈ dom(𝑆𝑖) and ⟨�⃗�, 𝑡⟩ ∈ dom(𝑄𝑖(𝛽)),

𝑄𝑖(𝛽, �⃗�, 𝑡) = 𝑆𝑖(𝛽, ⟨𝜋mc(𝑎𝑞𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋𝑖) | ℓ ≤ 𝑖 ≤ ℓ+ |�⃗�|⟩),

Given (𝑝, �⃗�) and �⃗� as above, define (𝑝, �⃗�)↷�⃗� := (𝑞, �⃗�) as follows:

∙ 𝑞 = 𝑝↷�⃗�;

∙ �⃗� := ⟨𝑄𝑖 | 𝑖 ≤ 𝛾�⃗�⟩ where:
– dom(𝑄𝑖) := dom(𝑆𝑖) and dom(𝑄𝑖(𝛽)) being

∏︀
ℓ(𝑞)≤𝑛≤𝑘 𝜋mc(𝑎𝑞𝑖 )mc(𝑎𝑞𝑖∩𝛽)“𝐴

𝑞
𝑖 .

– The value of 𝑄𝑖(𝛽, �⃗�) is

𝑆𝑖(𝛽, ⟨𝜋mc(𝑎𝑞𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑞) ≤ 𝑖 ≤ 𝑘⟩).

Remark 3.6. It is routine to verify that (𝑝, �⃗�)↷�⃗� ≤ (𝑝, �⃗�). In fact, the former
is the weakest extension of (𝑝, 𝑆) with first coordinate 𝑝↷�⃗�.

Our main forcing will be A := A ↾ 𝜆.

3.1. Projections.

Lemma 3.7. For each 𝛼 ∈ 𝒥 there exists a length-preserving projection

↾𝛼 : A → A ↾ 𝛼 given by (𝑝, �⃗�) ↦→ (𝑝 ↾ 𝛼, ⟨𝑆𝑖 ↾ 𝛼+ | 𝑖 ≤ 𝛾�⃗�⟩).

Proof. A moment of reflection makes clear that · ↾ 𝛼 is well-defined and

order-preserving. Suppose (𝑞, �⃗�) ≤ (𝑝 ↾ 𝛼, �⃗� ↾ 𝛼) and let 𝑟 ≤ 𝑝 be such that
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𝑟 ↾ 𝛼 ≤* 𝑞. This 𝑟 ∈ Q exists by (5) in Setup 3. Define �⃗� := ⟨𝑅𝑖 | 𝑖 ≤ 𝛾�⃗�⟩
where each 𝑅𝑖 has domain dom(𝑄𝑖) ∪ (dom(𝑆𝑖) ∖ 𝛼+) and dom(𝑅𝑖(𝛽)) is∏︀

ℓ(𝑟)≤𝑛≤𝑘 𝜋mc(𝑎𝑟𝑖 )mc(𝑎𝑟𝑖∩𝛽)“𝐴
𝑟
𝑖 .

For each 𝛽 ∈ dom(𝑅𝑖) and �⃗� ∈ dom(𝑅𝑖(𝛽)), 𝑅𝑖(𝛽, �⃗�) equals{︃
𝑆
min{𝑖,𝛾�⃗�}(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑝) ≤ 𝑖 ≤ 𝑘⟩), if 𝛽 ≥ 𝛼+;

𝑄𝑖(𝛽, ⟨𝜋mc(𝑎𝑟𝑖∩𝛽),mc(𝑎𝑞𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑟) ≤ 𝑖 ≤ 𝑘⟩), if 𝛽 < 𝛼+.

It is routine to check that (𝑟, �⃗�) is a well-defined condition in A and that

(𝑟, �⃗�) ≤ (𝑝, �⃗�) and (𝑟, �⃗�) ↾ 𝛼 ≤* (𝑞, �⃗�). The key point is that for each
𝛽, 𝛽′ ∈ dom(𝑅𝑖) the functions 𝑅𝑖(𝛽, ·) and 𝑅𝑖(𝛽

′, ·) are independent. □

Lemma 3.8. A ⊆ 𝐻𝜆 and for each (𝑝, �⃗�) ∈ A there are co-boundedly many

𝛼 < 𝜆 such that (𝑝, �⃗�) ↾ 𝛼 = (𝑝, �⃗�).

Proof. This is one reason for requiring dom(𝑆𝑖) ∈ [𝒥 ]≤𝜅 in the defini-
tion of 𝒥 -𝑝-strategy. Simply let some 𝛼 < 𝜆 such that 𝑝 ↾ 𝛼 = 𝑝 above

sup(dom(𝑆0)) < 𝜆 (by Clause (6) in page 16). Thus, (𝑝, �⃗�) ↾ 𝛼 = (𝑝, �⃗�). □

Let us argue that A is weak-Σ-Prikry with property 𝒟. The same is true
for the trucations A ↾ 𝛼 and Q ↾ 𝛼 modulo obvious changes.

Definition 3.9 (Maps).

(1) For (𝑝, �⃗�) ∈ A and 𝑞 ≤ 𝑝 define ⋔(𝑝, �⃗�)(𝑞) := (𝑞, �⃗�) where:

∙ �⃗� := ⟨𝑄𝑖 | 𝑖 ≤ 𝛾�⃗�⟩.
∙ dom(𝑄𝑖) := dom(𝑆𝑖) and dom(𝑄𝑖(𝛽)) consists of sequences �⃗�,
such that for some 𝑘 < 𝜔, �⃗� ∈

∏︀
ℓ(𝑞)≤𝑛≤𝑘 𝜋mc(𝑎𝑞𝑖 )mc(𝑎𝑞𝑖∩𝛽)“𝐴

𝑞
𝑖 .

∙ The value of 𝑄𝑖(𝛽, �⃗�) is

𝑆𝑖(𝛽, ⟨𝜋mc(𝑎𝑞𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋𝑖) | ℓ(𝑞) ≤ 𝑖 ≤ 𝑘⟩).

The next lemma can be proved exactly as in Lemmas 6.9 and 6.10 from

[PRS22] noting that for each 𝛼 ∈ 𝒥 , ⟨𝑆𝑖(𝛼) | 𝑖 ≤ 𝛾�⃗�⟩ is as in [PRS22].

Lemma 3.10. (⋔, 𝜋) defines a forking projection between A and Q.

By the results in [PRS22, §2] we infer:

Corollary 3.11. (A, �⃗�) is weak-Σ-Prikry having property 𝒟.

Remark 3.12. The natural modification of the pair (⋔, 𝜋) yields a forking
projection (⋔𝛼, 𝜋𝛼) between A ↾ 𝛼 and Q ↾ 𝛼.

3.2. Chain condition. In this section we show that A ↾ 𝛼 is 𝜆-Knaster to
<𝜆-Linked, hence verifying Clause (3) of Setup 3. For this purpose we need
to introduce an auxiliary property which enables lifting the 𝜆-Knaster to
<𝜆-Linkedness of Q ↾ 𝛼 to A ↾ 𝛼.
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Notation 3.13. For a condition 𝑝 in Q or in A,

𝑊 (𝑝) := {𝑝↷�⃗� | �⃗� ∈
∏︀

ℓ(𝑝)≤𝑖≤𝑘 𝐴
𝑝
𝑖 , 𝑘 < 𝜔}.

Namely, 𝑊 (𝑝) gathers all the weakest extensions of 𝑝.

Definition 3.14. Assume that (⋔, 𝜋) is a forking projection from A to Q.
We say that (⋔, 𝜋) is a compatibility forking projection (𝑐-forking projection
for short) if the following is true: For each 𝒳 ∈ [A]𝜆 if 𝒴 ∈ [Q]𝜆 and
CQ :

⋃︀
𝑝∈𝒴 𝑊 (𝑝) → 𝐻𝛿 are such that

CQ(𝑞) = CQ(𝑟) ⇒ ∃𝑠 ∈ Q (𝑠 ≤* 𝑞, 𝑟),

setting 𝒵 := {𝑎 ∈ 𝒳 | 𝜋(𝑎) ∈ 𝒴}, there is 𝛿* ∈ [𝛿, 𝜆) regular and a map

CA :
⋃︀

𝑎∈𝒵 𝑊 (𝑎) → 𝐻𝛿*

such that for each 𝑏, 𝑏′ ∈ dom(CA),

(CA(𝑏) = CA(𝑏
′) ⇒ CQ(𝜋(𝑏)) = CQ(𝜋(𝑏

′)) ∧ ⋔(𝑏)(𝑟) = ⋔(𝑏′)(𝑟)),

for all 𝑟 ≤* 𝜋(𝑏), 𝜋(𝑏′).

Lemma 3.15. If (⋔, 𝜋) is a 𝑐-forking projection and Q is 𝜆-Knaster to
<𝜆-Linked poset then so is A.

Proof. Fix 𝒳 ∈ [A]𝜆 . Since Q is 𝜆-Knaster to <𝜆-Linked there is a set
𝒴 ∈ [𝜋“𝒳 ]𝜆 and CQ as above. Hence, the definition of 𝑐-forking projection
gives a compatibility map CA for A. Note that 𝒵 ∈ [𝒳 ]𝜆 and CA witness
that A is 𝜆-Knaster to <𝜆-Linked (Definition 2.17). □

Fix 𝛼 ∈ 𝒥 . By virtue of our set-up assumptions, Q ↾ 𝛼 is 𝜆-Knaster to
<𝜆-Linked. Besides, there is a forking projection from A ↾ 𝛼 to Q ↾ 𝛼 (see
Remark 3.12). Call it (⋔𝛼, 𝜋𝛼).

Lemma 3.16. The pair (⋔, 𝜋) is a a 𝑐-forking projection from A to Q.
In particular, A is 𝜆-Knaster to <𝜆-Linked.

Proof. Let 𝒳 ∈ [A]𝜆, 𝒴 ∈ [Q]𝜆, and CQ :
⋃︀

𝑝∈𝒴 𝑊 (𝑝) → 𝐻𝛿 be as in Defini-

tion 3.14. Set 𝛿* := max{𝛿, 𝜅+} and define CA :
⋃︀

𝑎∈𝒵 𝑊 (𝑎) → 𝐻𝛿* as:

CA(𝑞, �⃗�) := ⟨CQ(𝑞), ⟨𝑖, 𝛼,CQ(𝑟), 𝑄𝑖(𝛼, �⃗�, ·) | 𝑖 ≤ 𝛾�⃗�, 𝛼 ∈ dom(𝑄0), 𝑟 ∈𝑊 (𝑞↾𝛼)⟩⟩,

where �⃗� is such that 𝑟 = 𝑞 ↾ 𝛼↷�⃗� and 𝑄𝑖(𝛼, �⃗�, ·) is the fiber map ranging

over all suitable 𝑡’s. Let 𝑏 = (𝑞, �⃗�), 𝑏′ = (𝑞′, �⃗�′) be in dom(CA) and suppose

that CA(𝑞, �⃗�) = CA(𝑞
′, �⃗�′). Clearly, both 𝑞 and 𝑞′ have the same CQ-value.

Let 𝑟 ≤* 𝑞, 𝑞′. The argument that ⋔(𝑏)(𝑟) = ⋔(𝑏′)(𝑟) is the same as
that from [PRS19, Lemma 6.13(8)] going over all possible coordinates 𝛼 ∈
dom(𝑄0) within the Sharon strategies. □

Remark 3.17. The same result holds for the forking projection (⋔𝛼, 𝜋𝛼) for
all 𝛼 ∈ 𝒥 . Thus, A ↾ 𝛼 is 𝜆-Knaster to <𝜆-Linked.
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3.3. Prikry property and killing non-reflecting stationary sets.

Lemma 3.18. Forcing with A kills the stationarity of �̇�+.

Proof. Let A⋆ ⊆ A consisting of condition (𝑝, �⃗�) with 𝜆 ∈ dom(𝑆𝑖) for all

𝑖 ≤ 𝛾�⃗� . Clearly, A⋆ is ≤*-dense in A. Let A− denote the Sharon as defined in
[PRS22, §4] with inputs Q and 𝑇+. Arguing as in Lemma 3.7, A⋆ projects

onto A− via (𝑝, �⃗�) ↦→ (𝑝, ⟨𝑆𝑖(𝜆) | 𝑖 ≤ 𝛾�⃗�⟩). In particular, A⋆ kills the

stationarity of �̇�+ as so does A− ([PRS22, Fact 4.10]). □

Recall the notion of a type over a pair (⋔, 𝜋) in [PRS22, Definitions 2.23].

Definition 3.19. Let tp: A → <𝜅+
𝜔 be defined as follows:

tp(𝑝, �⃗�) := ⟨𝑚(𝑆𝑖) | 𝑖 ≤ 𝛾�⃗�⟩,

Also, define the maximal type, mtp(𝑝, �⃗�) = 𝑚(𝑆
𝛾�⃗� ).

The arguments in [PRS22, Lemma 4.15] show that tp is a type. For the
reader’s convenience we reproduce the argument showing that the ring poset

Å𝑛 := {𝑎 ∈ A𝑛 | 𝜋(𝑎) ∈ Q̊𝑛 ∧ mtp(𝑎) = 0}
is dense in A𝑛 (Clause (7) in [PRS22, Definition 2.23]).

Lemma 3.20. The ring poset Å𝑛 is ≤*-dense in A𝑛.

Proof. Let (𝑝, �⃗�) ∈ A𝑛 be arbitrary and 𝜌 < 𝜅+ be such that

𝜌 > sup{max(𝑆𝑖(𝛼, ·)) | 𝛼 ∈ dom(𝑆0) ∧ �⃗� ∈ dom(𝑆𝑖(𝛼)) ∧ 𝑖 ≤ 𝛾�⃗�}.
Note that this choice is possible because |dom(𝑆0)| ≤ 𝜅. The argument in
[PRS22, Claim 4.15.2] gives 𝑞 ≤* 𝑝 and 𝜚 with (𝜚, 𝑞) ∈ 𝑅 ↾ 𝜆.

Claim 3.20.1. For each 𝛼 ∈ 𝒥 , if (𝜚, 𝑞) ∈ 𝑅 ↾ 𝜆 then (𝜚, 𝑞 ↾ 𝛼) ∈ 𝑅 ↾ 𝛼.

Proof of claim. Assume (𝜚, 𝑞) ∈ 𝑅 ↾ 𝜆. Let 𝑟 ≤Q↾𝛼 𝑞 ↾ 𝛼 be arbitrary and

suppose towards a contradiction that 𝑟 ⊮(Q↾𝛼)ℓ(𝑟) 𝜚 ∈ �̇�ℓ(𝑟). By ≤(Q↾𝛼)ℓ(𝑟)-

extending 𝑟 we may assume that 𝑟 ⊩(Q↾𝛼)ℓ(𝑟) 𝜚 /∈ �̇�ℓ(𝑟). Since ↾𝛼 is a length-

preserving projection we find a condition 𝑞′ ≤Q 𝑞 such that 𝑞′ ↾𝛼 ≤(Q↾𝛼)ℓ(𝑟) 𝑟.

Since (𝜚, 𝑞) ∈ 𝑅 ↾𝜆, 𝑞′ ⊩Qℓ(𝑟)
𝜚 ∈ �̇�ℓ(𝑟), which yields 𝑞′ ↾𝛼 ⊩(Q↾𝛼)ℓ(𝑟) 𝜚 ∈ �̇�ℓ(𝑟)

(because �̇�ℓ(𝑟) is a (Q ↾ 𝛼)ℓ(𝑟)-name). This is a contradiction. □

Let �⃗� := ⟨𝑄𝑖 | 𝑖 ≤ 𝛾�⃗� + 1⟩ be with dom(𝑄𝑖) := dom(𝑆0) and for each
𝛽 ∈ dom(𝑆𝑖), 𝑄𝑖(𝛽) has the following set as a domain:∏︀

ℓ(𝑞)≤𝑛≤𝑘 𝜋mc(𝑎𝑞𝑖 )mc(𝑎𝑞𝑖∩𝛽)“𝐴
𝑞
𝑖 .

Finally, 𝑄𝑖(𝛽, �⃗�, 𝑡) is defined by the following clauses{︃
𝑆𝑖(𝛽, ⟨𝜋mc(𝑎𝑞𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋𝑗) | 𝑗 < |�⃗�|⟩), if 𝑖 ≤ 𝛾�⃗� ;

𝑆
𝛾�⃗� (𝛽, ⟨𝜋mc(𝑎𝑞𝑖∩𝛽),mc(𝑎𝑝𝑖∩𝛽)(𝜋𝑗) | 𝑗 < |�⃗�|⟩) ∪ {𝜚}, if 𝑖 = 𝛾�⃗� + 1
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By the previous claim (𝑞, �⃗�) is a well-defined condition in Å𝑛. Moreover,

(𝑞, �⃗�) ≤* (𝑝, �⃗�). This accomplishes the proof of density of Å𝜍𝑛
𝑛 . □

Another important fact about the projection 𝜋 is the following:

Fact 3.21. Å𝜋
𝑛 is 𝜅+-directed-closed.

This fact can be proved along the lines of [PRS19, Lemma 6.15] using
that the labeled 𝑝-trees have domains in [𝒥 ]≤𝜅.

Finally, (⋔, 𝜋) has the weak mixing property by the arguments in [PRS22,
Lemma 4.16] at each of the various 𝛼 ∈ dom(𝑆). Thus one obtains:

Lemma 3.22. tp witnesses that (⋔, 𝜋) has the weak mixing property (WMP).
In particular, A has the Strong Prikry Property. □

3.4. Conclusion. Putting everything into the same canopy we get:

Theorem 3.23. Under the assumptions of Setup 3, there is a co-bounded
(in 𝜆) set 𝒥 ⊆ ℐ, 𝜆 ∈ 𝒥 , a sequence ⟨A ↾ 𝛼 | 𝛼 ∈ 𝒥 ⟩ of 𝜆-Knaster to
<𝜆-Linked weak-Σ-Prikry forcings with property 𝒟 and projections ⟨· ↾ 𝛼 |
𝛼 ∈ 𝒥 ⟩ such that, for each 𝛼 ∈ 𝒥 , the following hold:

(1) there is a forking projection from A ↾ 𝛼 to M ↾ 𝛼 with the WMP;
(2) · ↾ 𝛼 is a length-preserving projection;

(3) for each 𝑛 < 𝜔, (Å ↾ 𝛼)𝜋𝑛 is 𝜅+-directed-closed;
(4) 1l ⊩A↾𝛼 𝜇 = 𝜅+;
(5) A ↾ 𝛼 is a subset of 𝐻𝜆;

(6) 1l ⊩A↾𝛼 “�̇�+ is non-stationary”.

4. The main iteration

In this section we define a weak-Σ-Prikry forcing yielding the configura-
tion of our main theorems. The poset will be a Σ-Prikry-styled 𝜆-length
iteration P𝜆, with support ≤ 𝜅, starting with the poset M of §2.1. The
iteration will kill all the non-reflecting stationary subsets of 𝜅+ invoking the
revised Sharon’s functor A(·, ·) of p. 17.

4.1. The iteration and its projections. Let 𝜓 : 𝜆→ 𝐻𝜆 be a surjection,
such that for each inaccessible 𝛽 ≤ 𝜆, 𝜓↾𝛽 is a bookkeeping function; namely,
Im(𝜓) = 𝐻𝛽 and the 𝜓-preimage of each 𝑥 ∈ 𝐻𝛽 is cofinal in 𝛽.

We define a 𝜆-length iteration P𝜆 with support ≤ 𝜅 as follows. The first
step is the poset P1 := M. The successor step is given by the functor A(·, ·)
of p. 17, using the bookkeeping function 𝜓.

Similarly, for each inaccessible 𝛽 ≤ 𝜆, Q𝛽 is defined to be the 𝛽-length,
≤ 𝜅 support iteration, where the first step is P1 ↾𝛽 and the successor step is
given by the function from the previous section, using 𝜓 ↾𝛽 as a bookkeeping
function. Note that P𝜆 is simply Q𝜆.
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Notation 4.1. For 𝛼 ∈ [1, 𝛽) denote Q𝛽
𝛼 the 𝛼th-stage of the iteration Q𝛽.

Note that Q𝜆
𝛼 = P𝛼 (the 𝛼-th stage of the iteration P𝜆).

In a mild abuse of notation if 𝑝 ∈ Q𝛽
𝛼 and �̄� < 𝛼, 𝑝↾ �̄� denotes the natural

restriction of 𝑝 to a condition in Q𝛽
�̄�, the �̄�

th-stage subiteration of Q𝛽
𝛼.

Lemma 4.2. For each 0 < 𝛼 < 𝜆 and for all large enough inaccessible

𝛽 < 𝜆, there are length-preserving projections 𝜌𝛽𝛼 : P𝛼 → Q𝛽
𝛼. Moreover,

these projections are truncation-stable in the following sense:

(𝜌) ∀�̄� < 𝛼 (𝜌𝛽𝛼(𝑝) ↾ �̄� = 𝜌𝛽�̄�(𝑝 ↾ �̄�)).

Proof. Let us argue by induction on 𝛼. The base case 𝛼 = 1 holds for all
inaccessible 𝛽 < 𝜆, since P1 projects to P1 ↾𝛽 by our findings in the previous
sections. Suppose that the result holds for all �̄� < 𝛼.

▶ 𝛼 = �̄� + 1. By induction, for all large 𝛽, we have a projection 𝜌 :

P�̄� → Q𝛽
�̄�. By Theorem 3.23, for all large 𝛽, this induces a projection

A(P�̄�, .) → A(Q𝛽
�̄�, .). Since A(P�̄�, .) = P𝛼 and A(Q𝛽

�̄�, .) = Q𝛽
𝛼, we are done.

▶ 𝛼 < 𝜆 is limit. Then for all �̄� < 𝛼, for all large 𝛽, we have projections

P�̄� → Q𝛽
�̄�. For all such 𝛽, define 𝜌

𝛽
𝛼 : P𝛼 → Q𝛽

𝛼 by setting

𝜌𝛽𝛼(𝑝) :=
⋃︀

�̄�<𝛼 𝜌
𝛽
�̄�(𝑝 ↾ �̄�).

Using the induction hypothesis one can check that 𝜌𝛽𝛼 satisfies (𝜌). Thus,

𝜌𝛽𝛼(𝑝) is a well-defined condition in Q𝛽
𝛼 for all 𝑝 ∈ P𝛼. It is routine (if a little

technical) to check that this is a projection. □

Lemma 4.3. Suppose that 𝑗 : 𝑉 → 𝑀 is an elementary embedding with
crit(𝑗) = 𝜆. Then, 𝑗(P𝜆) projects to P𝜆.

Proof. For simplicity, let us write P for P𝜆. It suffices to show that 𝑗(P)𝜆
projects to P because 𝑗(P) projects to 𝑗(P)𝜆 via the map 𝑝 ↦→ 𝑝 ↾ 𝜆.

By Lemma 4.2, {𝛽 < 𝜆 | P𝛼 projects to Q𝛽
𝛼} is 𝒰-large for all 𝛼 ∈ [1, 𝜆),

where 𝒰 is the normal measure obtained from 𝑗. In particular, for each
such 𝛼 < 𝜆, 𝑗(P)𝛼 projects to 𝑗(Q)𝜆𝛼 = P𝛼 via a map 𝜗𝜆𝛼 witnessing (𝜌) of
Lemma 4.2.

Now, for each 𝑝 ∈ 𝑗(P)𝜆 let 𝛼(𝑝) < 𝜆 be the first ordinal above the
support of 𝑝. This ordinal exists as 𝑗(P) is an iteration with support of size
≤ 𝑗(𝜅) = 𝜅. Next, define 𝜗(𝑝) := 𝜗𝜆𝛼(𝑝)(𝑝). Using stability under truncation

(i.e., equation (𝜌)) it is routine to check that 𝜗 defines a projection. □

4.2. Chain condition. In this section we show that our main iteration P𝜆

is 𝜆-Knaster. For this we should first verify that all the intermediate stages
P𝛼 are 𝜆-Knaster to <𝜆-Linked (see Definition 2.17).

Lemma 4.4. For 1 ≤ 𝛼 < 𝛽 < 𝜆, (⋔𝛽,𝛼, 𝜋𝛽,𝛼) is a 𝑐-forking projection.
In particular, P𝛼 is 𝜆-Knaster to <𝜆-Linked for all 1 ≤ 𝛼 < 𝜆.

Proof. The second claim will follow from Lemma 2.21 and Remark 3.15 once
we establish that (⋔𝛼,1, 𝜋𝛼,1) is a 𝑐-forking projection (Definition 3.14).
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We proceed by induction on 1 < 𝛽 < 𝜆. By the previous section, the
pair (⋔2,1, 𝜋2,1) is a 𝑐-forking projection. So, suppose that ⟨(⋔𝛽,𝛼, 𝜋𝛽,𝛼) |
1 ≤ 𝛼 < 𝛽 < 𝛾⟩ is a sequence of 𝑐-forking projections.

Case 𝛾 = 𝛾 + 1: This case follows by the same arguments as in Lemma 3.16.

Case 𝛾 ∈ acc(𝜆) : Fix 𝛽 ∈ [1, 𝛾) and let us show that (⋔𝛾,𝛽, 𝜋𝛾,𝛽) is a 𝑐-

forking projection. Fix 𝒳 ∈ [P𝛾 ]
𝜆, 𝒴 ∈ [P𝛽]

𝜆 and C𝛽 :
⋃︀

𝑝∈𝒴 𝑊 (𝑝) → 𝐻𝛿.

For each 𝜖 ∈ [𝛽, 𝛾) set 𝒳𝜖 := 𝜋𝛾,𝜖“𝒳 . By our induction hypothesis, (⋔𝜖,𝛽, 𝜋𝜖,𝛽)
is a 𝑐-forking projection. Invoke this property with respect to (𝒳𝜖,𝒴,C𝛽)
and obtain a map C𝜖 :

⋃︀
𝑝∈𝒵𝜖

𝑊 (𝑝) → 𝐻𝛿𝜖 , 𝛿𝜖 ≥ 𝜖, witnessing the statement

in Definition 3.14. Recall that 𝒵𝜖 = {𝑝 ∈ 𝒳𝜖 | 𝜋𝜖,𝛽(𝑝) ∈ 𝒴}.
Set 𝒵𝛾 := {𝑝 ∈ 𝒳 | 𝜋𝛾,𝛽(𝑝) ∈ 𝒴} and let 𝛿 ≤ 𝛿* < 𝜆 be a regular cardinal

above (sup𝛽<𝜖<𝛾 𝛿𝜖)
+. Define C𝛾 :

⋃︀
𝑝∈𝒵𝛾

𝑊 (𝑝) → 𝐻𝛿* as

C𝛾(𝑞) := {⟨𝜖,C𝜖(𝑞 ↾ 𝜖)⟩ | 𝜖 ∈ [𝛽, 𝛾)}.
Note that C𝛾 is well-defined: First, each 𝑞 ∈𝑊 (𝑝) with 𝑝 ∈ 𝒵𝛾 satisfies that
𝑞 ↾ 𝜖 ∈ 𝑊 (𝑝 ↾ 𝜖) and 𝑝 ↾ 𝜖 ∈ 𝒵𝜖 – thus, C𝜖(𝑞 ↾ 𝜖) makes sense. Second, our
choice of 𝛿* ensures that the range of C𝛾(𝑞) is included in 𝐻𝛿* .

Let us show that the map C𝛾 witnesses that (⋔𝛾,𝛽, 𝜋𝛾,𝛽) is a 𝑐-forking
projection. Let 𝑞, 𝑞′ ∈ dom(C𝛾) and suppose that C𝛾(𝑞) = C𝛾(𝑞

′).

▶ Clearly, C𝛽(𝑞 ↾ 𝛽) = C𝛽(𝑞
′ ↾ 𝛽).

▶ Fix 𝑟 ≤*
𝛽 𝑞 ↾ 𝛽, 𝑞

′ ↾ 𝛽. By definition of ⋔𝛾,𝛽 for limit ordinals 𝛾,

⋔𝛾,𝛽 (𝑞)(𝑟) =
⋃︀

𝛽≤𝜖<𝛾 ⋔𝜖,𝛽 (𝑞 ↾ 𝛽)(𝑟).

Since for each 𝜖 ∈ (𝛽, 𝛾), C𝜖(𝑞↾𝜖) = C𝜖(𝑞
′↾𝜖) and C𝜖 witnessed that (⋔𝜖,𝛽, 𝜋𝜖,𝛽)

is a 𝑐-forking projection, ⋔𝜖,𝛽 (𝑞 ↾ 𝛽)(𝑟) =⋔𝜖,𝛽 (𝑞′ ↾ 𝛽)(𝑟). Since this equality
holds true for every 𝜖 ∈ [𝛽, 𝛾) we conclude that ⋔𝛾,𝛽 (𝑞)(𝑟) =⋔𝛾,𝛽 (𝑞′)(𝑟). □

Lemma 4.5. P𝜆 is 𝜆-Knaster.

Proof. Let 𝑋 ∈ [P𝜆]
𝜆 and set 𝒮 := {cl(𝐵𝑝) | 𝑝 ∈ 𝑋}. Here we use the

notation of [PRS22, §3.1] where we stipulated 𝐵𝑝 := {𝛾+1 < 𝜆 | 𝑝(𝛾) ̸= ∅}.
Similarly, by cl(𝐵𝑝) we denote the ordinal closure of 𝐵𝑝.

Since 𝒮 ⊆ [𝜆]≤𝜅 and 𝜆 is an inaccessible cardinal one can shrink 𝑋 to
𝑌 ∈ [𝑋]𝜆 so that {cl(𝐵𝑝) | 𝑝 ∈ 𝑌 } forms a ∆-system. Say this ∆-system
has root ∆ and set 𝜒 := sup(∆), which clearly is smaller than 𝜆.

By Lemma 4.4, P𝜒 is 𝜆-Knaster to <𝜆-Linked. In particular, there is a

set 𝑌𝜒 ∈ [𝜋𝜆,𝜒“𝑌 ]𝜆 where every two conditions are ≤*
𝜒-compatible. It is not

hard to verify that 𝑍 := {𝑝 ∈ 𝑌 | 𝜋𝜆,𝜒(𝑝) ∈ 𝑌𝜒} is a collection of pairwise
compatible conditions. The basic idea is to go over the supports of the
conditions in 𝑍 and take pitchforks finding ≤*-lower bounds along the way.
For details, see the argument in [PRS22, Claim 3.14.1]. □

5. The Ineffable Tree Property at double successors

In this section we prove that the Ineffable Tree Property (ITP) holds after
forcing with the Σ-Prikry-styled iteration of §4.
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Definition 5.1. A sequence ⟨𝑑𝑥 | 𝑥 ∈ 𝒫𝜆(𝜃)⟩ is a thin 𝒫𝜆(𝜃)-list if 𝑑𝑥 ⊆ 𝑥
and |{𝑑𝑥 ∩ 𝑐 | 𝑐 ⊆ 𝑥}| < 𝜆 for club many 𝑐 ∈ 𝒫𝜆(𝜃).

12

Given a thin 𝒫𝜆(𝜃)-list 𝑑 = ⟨𝑑𝑥 | 𝑥 ∈ 𝒫𝜆(𝜃)⟩ and 𝑏 ⊆ 𝜃 one says that:

∙ 𝑏 is a cofinal branch through 𝑑 if for all 𝑥 ∈ 𝒫𝜆(𝜃), there is 𝑦 ∈ 𝒫𝜆(𝜃)
with 𝑥 ⊂ 𝑦, such that 𝑏 ∩ 𝑥 = 𝑑𝑦 ∩ 𝑥.

∙ 𝑏 is an ineffable branch through 𝑑 if {𝑥 ∈ 𝒫𝜆(𝜃) | 𝑑𝑥 = 𝑏 ∩ 𝑥} is
stationary in 𝒫𝜆(𝜃).

The Ineffable Tree Property holds at 𝜆 (in symbols, ITP(𝜆)) if for all regular
cardinal 𝜃 > 𝜆 every thin 𝒫𝜆(𝜃)-list 𝑑 carries an ineffable branch through it.

Suppose that 𝜆 is supercompact. Fix a regular cardinal 𝜃 > 𝜆 and let
𝑗 : 𝑉 → 𝑀 be an embedding witnessing 𝜃-supercompactness of 𝜆. By P𝜆

we will denote the Σ-Prikry-styled iteration as described in §4. Namely, the
first step of the iteration is the Mitchell EBPF of Definition 2.6 and the other
stages are constructed by invoking the functor of §3.

Let 𝐺 ⊆ P𝜆 a generic filter over 𝑉 and denote by 𝜋 the projection from
𝑗(P𝜆) to P𝜆 (see Lemma 4.3). Let 𝐻 ⊆ 𝑗(P𝜆)/𝐺 generic over 𝑉 [𝐺]. Since
P𝜆 ⊆ 𝐻𝜆, 𝑗“𝐺 ⊆ 𝐺 *𝐻, and so 𝑗 lifts in 𝑉 [𝐺 *𝐻] to 𝑗 : 𝑉 [𝐺] →𝑀 [𝐺 *𝐻].

Suppose that 𝑑 = ⟨𝑑𝑥 | 𝑥 ∈ 𝒫𝜆(𝜃)
𝑉 [𝐺]⟩ is a thin 𝒫𝜆(𝜃)-list in 𝑉 [𝐺]. By

standard arguments, 𝑏 := {𝛼 < 𝜃 | 𝑗(𝛼) ∈ 𝑗(𝑑)𝑗“𝜃} is a 𝑉 [𝐺]-ineffable
branch through 𝑑 (see e.g. [HS19, p.5]). Also, 𝑏 ∈ 𝑉 [𝐺 * 𝐻] and it is

<𝜆-approximated in 𝑉 [𝐺]; namely, 𝑏 ∩ 𝑥 ∈ 𝑉 [𝐺] for all 𝑥 ∈ 𝒫𝜆(𝜃)
𝑉 [𝐺].

Working over 𝑉 , let �̇� be a 𝑗(P𝜆)-name for the branch 𝑏 such that

1l ⊩𝑗(P𝜆) “�̇� is ineffable ∧ ∀𝑥 ∈ 𝒫𝜆(𝜃)
𝑉 [�̇�](�̇� ∩ 𝑥 ∈ 𝑉 [�̇�])”,

where �̇� is the standard name for the generic filter of P𝜆.
For the rest of this section we suppose towards a contradiction that �̇� is

not forced (by 1l) to be in 𝑉 [�̇�]. By 𝜆-ccness of P𝜆, 𝒫𝜆(𝜃)
𝑉 is ⊆-unbounded

in 𝒫𝜆(𝜃)
𝑉 [𝐺], hence we shall be working with 𝑥’s in the ground model 𝑉 .

In Definition 2.3 we introduced the fusion ordering ≤*,𝑘 of the EBPF
forcing. The ≤*,𝑘-order lifts naturally to 𝑗(P𝜆) as follows:

Definition 5.2 (Fusion ordering). For each 𝑘 < 𝜔 and 𝑢, 𝑣 ∈ 𝑗(P𝜆),

𝑢 ≤*,𝑘 𝑣 :⇐⇒ 𝑢 ≤* 𝑣 and EBPF(𝑢) ≤*,𝑘 EBPF(𝑣),

where EBPF(𝑢) and EBPF(𝑣) denote the EBPF-part of 𝑢 and 𝑣. The ordering
≤*,𝑘,− is defined analogously just requiring EBPF(𝑢) ≤*,𝑘,− EBPF(𝑣).

Recall that P̊𝜆 denotes the ring poset defined in [PRS23, Definition 7.6].
For each 𝑛 < 𝜔, this poset has the following two key properties:

(1) (̊P𝜆)𝑛 is a dense ℵ1-directed-closed subforcing of (P𝜆)𝑛
(2) (̊P𝜆)

𝜋𝜆,1
𝑛 := ((̊P𝜆)𝑛,≤𝜋𝜆,1) is 𝜅+-directed closed.

12According to Jech [Jec73], 𝒞 ⊆ 𝒫𝜆(𝜃) is a club if it is closed and unbounded in the
following sense: Closed: Given a ⊆-increasing sequence ⟨𝑐𝛼 | 𝛼 < 𝛽⟩ ⊆ 𝒞 with 𝛽 < 𝜆,⋃︀

𝛼<𝛽 𝑐𝛽 ∈ 𝒞; Unbounded: For each 𝑥 ∈ 𝒫𝜆(𝜃) there is 𝑐 ∈ 𝒞 such that 𝑥 ⊆ 𝑐.
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Lemma 5.3. There is �̄� < 𝜔 and 𝑢 ∈ 𝑗(P𝜆) such that for all ℓ(𝑢) ≤ 𝑘 < 𝜔
and 𝑣 ≤* 𝑢 there is 𝑥 ∈ 𝒫𝜆(𝜃) such that for all 𝑦 ∈ 𝒫𝜆(𝜃) with 𝑥 ⊆ 𝑦 there

is 𝑤 ≤*,𝑘,− 𝑣 in 𝑗(̊P𝜆) all of whose �̄�-extensions decide the value of 𝑑 ∩ 𝑦.

Proof. The proof is the same as in [HS19, Lemma 4.4] using the following
strengthening of the Strong Prikry Property of 𝑗(P𝜆): Let 𝑢 ∈ 𝑗(P𝜆), 𝐷 ⊆
𝑗(P𝜆) be dense open and 𝑘 ≥ ℓ(𝑢). Then, there is 𝑣 ≤*,𝑘,− 𝑢 and �̄� < 𝜔
such that every �̄�-extension of 𝑣 enters 𝐷. This strengthening of the SPP
is established as follows: First, it holds for 𝑗(M) because it holds for the
EBPF. Second, the proof of property 𝒟 given in [PRS22, Lemma 3.11] shows
that a witness for the SPP for 𝑗(P𝜆) has as a first coordinate a condition
witnessing the same fact for 𝑗(P1). Since the relation ≤*,𝑘,− just depends
on what occurs at the first coordinate we are done. □

Definition 5.4. Let 𝑢, 𝑣 ∈ 𝑗(P𝜆) be with the same length ℓ and 𝑘 ≥ ℓ.
Write 𝑢↷+𝑘 ≤ 𝑣↷+𝑘 if the first (𝑘− ℓ)-many (𝑎,𝐴)-parts of EBPF(𝑢) and

EBPF(𝑣) are the same and for each �⃗� ∈
∏︀

ℓ≤𝑖≤𝑘 𝐴𝑖, 𝑢
↷�⃗� ≤* 𝑣↷�⃗�.

Remark 5.5. If 𝑢↷+𝑘 ≤ 𝑣↷+𝑘 then EBPF(𝑢) ≤* EBPF(𝑣). However, this
may not be the case for the Mitchell/Sharon-parts of 𝑢 and 𝑣: Let 𝑐𝑢 and
𝑐𝑣 denote the Mitchell-parts of 𝑢 and 𝑣. From 𝑢↷+𝑘 ≤ 𝑣↷+𝑘 it is easy to
show that dom(𝑐𝑢) ⊇ dom(𝑐𝑣). However, it might well be that

𝑐𝑢(𝛼, �⃗� ↾ 𝛼) ≰ 𝑐𝑣(𝛼, �⃗� ↾ 𝛼)

for 𝛼 ∈ dom(𝑐𝑣) and a short �⃗� ∈
∏︀
𝐴𝑖 (i.e, |�⃗�| < (𝑘− ℓ)). Here �⃗� ↾𝛼 denotes

the sequence given by the successive 𝛼th-projections of �⃗�.
Morally speaking, 𝑢↷+𝑘 ≤ 𝑣↷+𝑘 means that 𝑢 ≤ 𝑣 holds, modulo some

finite error. Nonetheless, forcing-wise 𝑢 behaves as a strengthening of 𝑣, in
the sense that, if 𝑢↷+𝑘 ≤ 𝑣↷+𝑘 then 𝑢 ⊩ 𝑣 ∈ �̇�. Thus, for any sentence 𝜙
in the language of forcing of 𝑗(P𝜆) if 𝑣 ⊩ 𝜙 then 𝑢 ⊩ 𝜙. □

Lemma 5.6.

(1) ⟨𝑗(̊P𝜆),
↷+𝑘⟩ is 𝜅𝑘+1-closed.

(2) If 𝑢↷+𝑘 ≤ 𝑣↷+𝑘 then there is 𝑤 ≤*,𝑘 𝑣 such that 𝑤↷+𝑘 ≤ 𝑢↷+𝑘.

Proof. (1) Let ⟨𝑢𝛼 | 𝛼 < 𝜃 < 𝜅𝑘+1⟩ be a ↷+𝑘-decreasing sequence in 𝑗(̊P𝜆).
Let �⃗� ∈

∏︀
ℓ≤𝑖≤𝑘 𝐴𝑖 be a sequence in the common measure one sets. By

definition, for each �⃗�, ⟨𝑢𝛼↷�⃗� | 𝛼 < 𝜃⟩ is ≤*-decreasing in 𝑗(̊P𝜆). Using
the closure of the ≤*-ordering for the MEBPF define a lower bound for the
sequence of first coordinates (i.e. the MEBPF parts) of ⟨𝑢𝛼↷�⃗� | 𝛼 < 𝜃⟩.
Next, replace the first coordinate of 𝑢𝛼

↷�⃗� by this lower bound and use
the closure of the ring poset 𝑗(̊P𝜆) under 𝜅+-sequences with the same first
coordinate. Let 𝑢�⃗� be the resulting bound. Inductively, arrange that ⟨𝑢�⃗� |
�⃗� ∈

∏︀
𝐴𝑖⟩ are diagonalizable; namely, arrange the 𝑢�⃗� ’s so that there is

𝑢𝜃 ≤*,𝑘 𝑢0 such that 𝑢𝜃
↷�⃗� ≤* 𝑢�⃗� for all �⃗�. Clearly 𝑢𝜃

↷+𝑘 ≤ 𝑢𝛼
↷+𝑘.

(2) Let us describe how to define such a 𝑤. The EBPF-part of 𝑤, 𝑝𝑤, is the
same as that of 𝑢. The Mitchell-part of 𝑤 is 𝑐𝑤 where: dom(𝑐𝑤) = dom(𝑐𝑢),
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for each 𝛼 ∈ dom(𝑐𝑤) and �⃗� ∈ dom(𝑐𝑤(𝛼)), 𝑐𝑤(𝛼, �⃗�) = 𝑐𝑢(𝛼, �⃗�) in case
𝛼 /∈ dom(𝑐𝑣); otherwise, 𝑐𝑤(𝛼, �⃗�) is defined according to the following cases:

𝑐𝑤(𝛼, �⃗�) :=

{︃
𝑐𝑢(𝛼, �⃗�), if |�⃗�| ≥ 𝑘 − ℓ;

𝑐𝑣(𝛼, ⟨𝜋mc(𝑎𝑢𝑖 ∩𝛼),mc(𝑎𝑣𝑖 ∩𝛼)(𝜋𝑖) | 𝑖 ≤ |�⃗�|⟩), otherwise.

The Sharon-part of 𝑤 is defined by going over the support of the stronger
condition 𝑢. Let us just describe the case relative to the first coordinate. Let

�⃗� = ⟨𝑆𝑖 | 𝑖 ≤ 𝛾�⃗�⟩ and �⃗� = ⟨𝑄𝑖 | 𝑖 ≤ 𝛾�⃗�⟩ be the first Sharon strategies of 𝑢

and 𝑣, respectively. The Sharon strategy of 𝑤 is �⃗� := ⟨𝑅𝑖 | 𝑖 ≤ 𝛾�⃗�⟩: For each
𝑖 ≤ 𝛾�⃗� , dom(𝑅𝑖) = dom(𝑆𝑖) and for each 𝛼 ∈ dom(𝑅𝑖) and �⃗� ∈ dom(𝑅𝑖)
define 𝑄𝑖(𝛼, �⃗�) as: 𝑅𝑖(𝛼, �⃗�) := 𝑆𝑖(𝛼, �⃗�), provided 𝛼 /∈ dom(𝑄𝑖); otherwise,
define 𝑅𝑖(𝛼, �⃗�) as before replacing 𝑐𝑢 (resp. 𝑐𝑣) by 𝑆𝑖 (resp. 𝑄𝑖) whenever

𝑖 ≤ 𝛾�⃗�, or simply using 𝑆𝑖 if 𝑖 > 𝛾�⃗�.
We leave the details that 𝑤 is as desired to the interested reader. □

Remark 5.7. The previous proof is flexible enough to yield the following
variant of Clause (2) above: Suppose that 𝑢 ≤* 𝑣 and 𝑢↷�⃗� ≤* 𝑣↷�⃗� for all

�⃗� ∈
∏︀𝑘

𝑖=ℓ(𝑢)𝐴
𝑢
𝑖 , but the first (𝑘− ℓ)-measure one sets of 𝑢 and 𝑣 are not the

same (so, possibly 𝑢↷+𝑘 ≰ 𝑣↷+𝑘).13 Then, there is 𝑤 ≤*,𝑘 𝑣 such that

𝑤↷�⃗� = 𝑢↷�⃗� for all �⃗� ∈
∏︀𝑘

𝑖=ℓ(𝑢)𝐴
𝑢
𝑖 .

The next is the key technical lemma. Fix �̄� as in Lemma 5.3, and work
below the condition given by that lemma.

Lemma 5.8 (Splitting Lemma). Let 𝑢 ∈ 𝑗(P𝜆), 𝑘 ≥ ℓ(𝑢) + �̄� and 𝛿 be a
regular cardinal such that 2𝜅𝑘 < 𝛿 < 𝜅𝑘+1. Then, there is a sequence of
conditions ⟨𝑢𝜉 | 𝜉 < 𝛿⟩, a set 𝑦 ∈ 𝒫𝜆(𝜃) and �̄� ≤*,𝑘,− 𝜋(𝑢) such that:

(1) 𝑢𝜉 ≤*,𝑘,− 𝑢 (i.e, 𝑢𝜉 ≤* 𝑢 and 𝑎
𝑢𝜉

𝑖 = 𝑎𝑢𝑖 for all ℓ(𝑢) ≤ 𝑖 ≤ 𝑘);

(2) every �̄�-extension of 𝑢𝜉 decides a value for �̇� ∩ 𝑦;
(3) for all ℓ(𝑢) ≤ 𝑖 ≤ 𝑘, 𝐴

𝑢𝜉

𝑖 = 𝐴𝑖 for some constant 𝐴𝑖;

(4) �̄�↷+𝑘 ≤ 𝜋(𝑢𝜉)
↷+𝑘 for all 𝜉 < 𝛿;

(5) let 𝜉 ̸= 𝜁 and suppose that 𝑣 and 𝑤 are �̄�-extensions of 𝑢𝜉 and 𝑢𝜁 ,

respectively. Then, �̄� forces (in the poset P𝜆) that the values of �̇�∩ 𝑦
decided by 𝑣 and 𝑤 are different.

Proof. In the first stage of the proof we construct a sequence of conditions
⟨(𝑢𝜉, 𝑣𝜉) | 𝜉 < 𝛿⟩ in 𝑗(P𝜆) and of elementary submodels ⟨ℳ𝜉 | 0 < 𝜉 < 𝛿⟩
as follows. Set 𝑢0 = 𝑣0 := 𝑢 and let ℳ1 ≺ 𝐻𝜒 be with |ℳ1| < 𝛿, 𝑢0 ∈ ℳ1

and ℳ𝜅𝑘
1 ⊆ ℳ1. Suppose that ⟨(𝑢𝜉, 𝑣𝜉) | 𝜉 < 𝜁⟩ and ⟨ℳ𝜉 | 0 < 𝜉 < 𝜁⟩ have

been defined in a way that the 𝑣𝜉’s are ≤*,𝑘-decreasing (i.e., they have the
same (𝑎,𝐴)-part as 𝑢 up to and including 𝑘) and

∙ 𝑢𝜉+1 ≤*,𝑘,− 𝑣𝜉 for all 𝜉.

∙ 𝑢𝜉 is in the ring poset 𝑗(̊P𝜆) and the delay of 𝑣𝜉 is ≤ 𝑘 − ℓ.

13Recall that this latter was required in the definition of ↷+𝑘 given in Definition 5.4.
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If 𝜁 is a limit ordinal set ℳ𝜁 :=
⋃︀

𝜉<𝜁 ℳ𝜉; otherwise, ℳ𝜁 is such that

𝑢𝜁−1 ∈ ℳ𝜁 , |ℳ𝜁 | < 𝛿, ℳ𝜁−1 ⊆ ℳ𝜁 and ℳ𝜅𝑘
𝜁 ⊆ ℳ𝜁 .

Let 𝑣 be a ≤*,𝑘-lower bound for the previous 𝑣𝜉. This choice is possible:

first, we have enough closure to take a ≤*,𝑘-lower bound for the Mitchell-
part of 𝑣; second, we can modify the 𝑣𝜉’s to have Mitchell-part this≤*,𝑘-lower

bound and use the 𝜅+-closure of the ring 𝑗(̊P𝜆) with respect to sequences of
conditions with common Mitchell-part. Moreover, 𝑣 has delay 𝑘 − ℓ.14

Let 𝑢𝜁 ≤*,𝑘,− 𝑣 be in 𝑗(̊P𝜆) all of whose �̄�-extensions decide �̇� ∩ 𝑦𝜁 where
𝑦𝜁 is the 𝜃-trace of the model ℳ𝜁 ; namely, 𝑦𝜁 := ℳ𝜁 ∩ 𝜃. (To choose 𝑢𝜁
we use Lemma 5.3). Denote the EBPF/Mitchell-parts of 𝑢𝜁 by 𝑝𝜁 and 𝑐𝜁 ,
respectively. The EBPF/Mitchell part of 𝑣 are 𝑞 and 𝑑. Note that dom(𝑑) ⊆
dom(𝑐𝜁). Next, we define 𝑣𝜁 . Informally, 𝑣𝜁 is the “amalgamation” of 𝑣 and
𝑢𝜁 i.e. it is below 𝑣 and a certain restriction of it is below 𝑢𝜁 .

First, let us define the EBPF-part of 𝑣𝜁 :

𝑞𝜁 := ⟨𝑓 𝜁0 , . . . , 𝑓
𝜁
ℓ−1, (𝑎ℓ, 𝐴ℓ, 𝑓

𝜁
ℓ ), . . . , (𝑎𝑘, 𝐴𝑘, 𝑓

𝜁
𝑘 ), (𝑝𝜁)𝑘+1, (𝑝𝜁)𝑘+2, · · · ⟩

where 𝑓 𝜁𝑖 ’s are the Cohens of 𝑢𝜁 , the (𝑎𝑖, 𝐴𝑖)’s are from the initial condition
𝑢 and (𝑝𝜁)𝑖 is the 𝑖th-entry of the EBPF-part of 𝑢𝜁 .

The Mitchell-part of 𝑣𝜁 , denoted 𝑑𝜁 , is defined as follows: Let 𝑑𝜁 be the
function with dom(𝑑𝜁) := dom(𝑐𝜁) and for each 𝛼 ∈ dom(𝑑𝜁),

dom(𝑑𝜁(𝛼)) := [
∏︀

ℓ≤𝑖≤𝑡 𝜋mc(𝑎
𝑞𝜁
𝑖 ),mc(𝑎

𝑞𝜁
𝑖 ∩𝛼)“𝐴

𝑞𝜁
𝑖 ]<𝜔.

Let us say that �⃗� ∈ dom(𝑑𝜁(𝛼)) is good if |�⃗�| ≥ 𝑘 − ℓ and �⃗� ∈ dom(𝑐𝜁(𝛼)).
If �⃗� is good, then for all 𝛼 ∈ dom(𝑑𝜁), define

𝑑𝜁(𝛼, �⃗�) = 𝑐𝜁(𝛼, �⃗�)

Otherwise, if �⃗� is not good, we split the definition into two cases:

𝑑𝜁(𝛼, �⃗�) :=

{︃
𝑑(𝛼, ⟨𝜋

mc(𝑎
𝑞𝜁
𝑖 ∩𝛼),mc(𝑎𝑞𝑖∩𝛼)

(𝜋𝑖) | ℓ ≤ 𝑖 ≤ 𝑡⟩), if 𝛼 ∈ dom(𝑑);

{⟨∅̌, 1lP↾𝛼⟩}, otherwise.

Note that the 𝑎-part of 𝑞𝜁 and 𝑞 are the same up to 𝑘 so the above projection
in the first (𝑘 − ℓ)-coordinates equals 𝜋

mc(𝑎
𝑞𝜁
𝑖 ),mc(𝑎𝑞𝑖∩𝛼)

(𝜋𝑖) = 𝜋𝑖.

It is not hard to check that (𝑞𝜁 , 𝑑𝜁) is a condition in 𝑗(M) - the key point
being (𝑞𝜁 ↾ 𝛼)↷�⃗� = (𝑝𝜁 ↾ 𝛼)↷�⃗� for all good �⃗�. By the construction it is also

the case that (𝑞𝜁 , 𝑑𝜁) is ≤*,𝑘-stronger than the Mitchell-part of 𝑣. The pair
(𝑞𝜁 , 𝑑𝜁) will be the eventual 𝑗(M)-part of the future condition 𝑣𝜁 .

Let us define the Sharon-part of 𝑣𝜁 . For each �⃗� ∈
∏︀

ℓ≤𝑖≤𝑘 𝐴𝑖 define

𝑢�⃗� :=

{︃
𝑢𝜁

↷�⃗�, if �⃗� ∈
∏︀

ℓ≤𝑖≤𝑘 𝐴
𝑞𝜁
𝑖 ;

𝑣↷�⃗�, otherwise.

14Even though the 𝑣𝜉’s do not have null delay these are uniformly bounded by a fixed
integer. This is enough to be able to take lower bounds and get the same delay.
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Clearly, 𝑢�⃗� ≤* 𝑣↷�⃗� and the delay of the 𝑢�⃗� is exactly 0. For the Sharon-part
of 𝑢𝜁 we take the diagonalization of the above 𝑢�⃗� ’s. More precisely, by the

Weak Mixing lemma ([PRS22, Lemma 3.10]) there is a condition 𝑣𝜁 ≤*,𝑘 𝑣
with 𝑣𝜁 ↾1 = (𝑞𝜁 , 𝑑𝜁), the delay of 𝑣𝜁 is 𝑘−ℓ and 𝑣𝜁↷�⃗� ≤* 𝑢�⃗� . This completes
the definition of 𝑣𝜁 and the inductive construction.

After this process we get ⟨(𝑢𝜉, 𝑣𝜉) | 𝜉 < 𝛿⟩ and ⟨ℳ𝜉 | 0 < 𝜉 < 𝛿⟩. Since
𝛿 is greater than 2𝜅𝑘 there is an unbounded set 𝐼 ⊆ 𝛿 such that for 𝜉 ∈ 𝐼,
⟨𝐴𝑢𝜉

ℓ , . . . , 𝐴
𝑢𝜉

𝑘 ⟩ is constant; say, with value ⟨𝐵ℓ, . . . , 𝐵𝑘⟩. Unlike in [HS19],
the sequence ⟨𝑢𝜉 | 𝜉 ∈ 𝐼⟩ may not be ≤*-decreasing because even though

𝑢𝜉+1 ≤*,𝑘,− 𝑣𝜉 the latter is not stronger than 𝑢𝜉. However we can argue as

follows. Let 𝑢𝛿 be a ≤*,𝑘-lower bound for the 𝑣𝜉’s and strengthen it so that
its first (𝑘 − ℓ)-many measure one sets are ⟨𝐵ℓ, . . . , 𝐵𝑘⟩. Note that for all �⃗�
and 𝜉 ∈ 𝐼, 𝑢𝛿

↷�⃗� ≤* 𝑣𝜉
↷�⃗� ≤* 𝑢𝜉

↷�⃗�. In fact, for each �⃗�, ⟨𝑢𝜉↷�⃗� | 𝜉 ∈ 𝐼⟩ is

decreasing. So, 𝑢𝛿
↷+𝑘 ≤ 𝑢𝜉

↷+𝑘 for all 𝜉 ∈ 𝐼 (recall Definition 5.4).
Let 𝑦 = 𝑦𝛿 := 𝜃 ∩ (

⋃︀
𝜉<𝛿 ℳ𝜉). For each 𝜉 ∈ 𝐼 ∪ {𝛿}, let 𝑋𝜉 denote the

collection of P𝜆-names decided to be �̇� ∩ 𝑦𝜉 by a �̄�-extension of 𝑢𝜉.
15 By

passing from 𝛿 to the unbounded set 𝐼, re-enumerate ⟨𝑢𝜉 | 𝜉 ∈ 𝐼⟩ by ⟨𝑢𝜉 |
𝜉 < 𝛿⟩. Let us summarize the properties of ⟨𝑢𝜉 | 𝜉 < 𝛿⟩:

(1) For all 𝜉 < 𝛿, each �̄�-step extension of 𝑢𝜉 decides the value of �̇� ∩ 𝑦𝜉
and 𝑋𝜉 is the collection of these values; 𝑦𝜉 = ℳ𝜉∩𝜃 and 𝑢𝜉 ∈ ℳ𝜉+1

(2) For all 𝜉 the measure one sets of 𝑢𝜉 at coordinates [ℓ, 𝑘] are constant
with value ⟨𝐵ℓ, . . . , 𝐵𝑘⟩; their 𝑎-parts at these coordinates are also
constant (and equal to the ones from the original condition 𝑢).

(3) For all �⃗� ∈
∏︀

𝑙≤𝑖≤𝑘 𝐵𝑖, ⟨𝑢𝜉↷�⃗� | 𝜉 < 𝛿⟩ is ≤*-decreasing.

Claim 5.8.1. For each 𝜏 ∈ 𝑋𝜂 and 𝜉 ≤ 𝜂, 𝜏 ∩𝑦𝜉 ∈ 𝑋𝜉. In addition, there is
𝜉* < 𝛿 such that if 𝜏 and 𝜎 are distinct members of 𝑋𝛿 then there is 𝜉 < 𝜉*

such that 𝜋(𝑢𝜉) ⊩P𝜆
𝜏 ∩ 𝑦𝜉 ̸= 𝜎 ∩ 𝑦𝜉.

Proof of claim. Let 𝜉 ≤ 𝜂, and 𝜏 ∈ 𝑋𝜂. Let �⃗� be such that 𝑢𝜂
↷�⃗� forces

�̇�∩ 𝑦𝜂 = 𝜏 , and let 𝜎 ∈ 𝑋𝜉 be such that 𝑢𝜉
↷�⃗� forces �̇�∩ 𝑦𝜉 = 𝜎. Then, since

𝑢𝜂
↷�⃗� ≤* 𝑢𝜉

↷�⃗�, we have that 𝑢𝜂
↷�⃗� ⊩𝑗(P𝜆) �̇�∩𝑦𝜉 = 𝜎, and so 𝜏∩𝑦𝜉 = 𝜎 ∈ 𝑋𝜉.

The second claim follows from |𝑋𝛿| < 𝛿. More precisely, first |𝑋𝛿| < 𝛿
because |𝑋𝛿| is at most the number of all possible �̄�-extensions of each 𝑢𝜉,
which is at most 2𝜅𝑘 < 𝛿. Now, every two distinct elements of 𝑋𝛿 split at
some 𝜉 < 𝛿. When we take the supremum of all those 𝜉’s we get 𝜉* < 𝛿,
since it is a supremum of less than 𝛿- many ordinals and 𝛿 is regular. □

Roughly speaking the above claim says that no more splittings are forced
past level 𝜉*. The next claim plays the role of the usual branching lemma:

Claim 5.8.2. For every ordinal 𝜉* < 𝜉 < 𝛿 and 𝑟 ≤ 𝜋(𝑢𝜉) with 𝑟 ∈ ℳ𝜉+1

there is a set 𝑧 ∈ ℳ𝜉+1 and a condition 𝑟 ∈ 𝑗(P𝜆) as follows:

15Using that 𝑢𝛿
↷+𝑘 ≤ 𝑢𝜉

↷+𝑘 for all 𝜉 ∈ 𝐼 one can show that any �̄�-extension of 𝑢𝛿

decides the value of �̇� ∩ 𝑦𝛿. Thus, it is meaningful to consider 𝑋𝛿.
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(1) 𝑦𝜉 ⊆ 𝑧 ⊆ 𝑦𝜉+1;
(2) 𝑟 ≤ 𝑢𝜉 and 𝜋(𝑟) ≤ 𝑟;

(3) 𝑟 ⊩𝑗(P𝜆) “�̇� ∩ 𝑧 = 𝜏” but 𝜋(𝑢𝜉) ⊩P𝜆
“𝜏 ̸= 𝜎 ∩ 𝑧” for all 𝜎 ∈ 𝑋𝜉+1.

Proof of claim. Assume otherwise and let 𝜉 and 𝑟 be counter-examples. Let
𝑢 ≤ 𝑢𝜉 be such that 𝜋(𝑢) ≤ 𝑟 and 𝑢 decides a value for �̇� ∩ 𝑦𝜉. Let us work
in an extension of ℳ𝜉+1 by a 𝑉 -generic �̄� ⊆ P𝜆 with 𝜋(𝑢) ∈ �̄�.

Set

𝑑 = {𝜏�̄� | ∃𝑧 ⊇ 𝑦𝜉 ∃𝑟 ∈ 𝑗(P𝜆)/�̄� (𝑟 ≤ 𝑢 ∧ 𝜋(𝑟) ≤ 𝑟 ∧ 𝑟 ⊩𝑗(P𝜆) �̇� ∩ 𝑧 = 𝜏)}.

Since �̇�𝐺 /∈ 𝑉 [�̄�], 𝑑 cannot be a branch. So, there is 𝑧 ∈ ℳ𝜉+1 and
𝑟1, 𝑟2 ∈ 𝑗(P𝜆)/�̄� with 𝑟1, 𝑟2 ≤ 𝑢𝜉 and 𝜋(𝑟1), 𝜋(𝑟2) ≤ 𝑟, and 𝜏1, 𝜏2, 𝜏 such
that

∙ 𝑟𝑖 ⊩ �̇� ∩ 𝑧 = 𝜏𝑖, for 𝑖 = 1, 2.
∙ 𝑟𝑖 ⊩ �̇� ∩ 𝑦𝜉 = 𝜏 , for 𝑖 = 1, 2.
∙ (𝜏1)�̄� ̸= (𝜏2)�̄�.

Here we use that by definition of 𝑑, since 𝑟1 and 𝑟2 are below 𝑢, they force
that �̇� ∩ 𝑦𝜉 is the same 𝜏 that 𝑢 decides.

Since we assume that (3) fails there are 𝜎1, 𝜎2 ∈ 𝑋𝜉+1 such that (𝜏𝑖)�̄� =
(𝜎𝑖)�̄� ∩ 𝑧 for 𝑖 = 1, 2. So, (𝜎1)�̄� ̸= (𝜎2)�̄� but (𝜎1)�̄� ∩ 𝑦𝜉 = (𝜎2)�̄� ∩ 𝑦𝜉 = 𝜏 .
This contradicts Claim 5.8.1 above. □

The proof of the above shows that, for each 𝑟 ≤ 𝜋(𝑢𝜉), there is a dense set
of conditions 𝑟 below the meet of 𝑢𝜉 and 𝑟 which satisfy the conclusion of
the claim; call it 𝐷𝜉,𝑟. More formally, for every 𝑤 ≤ 𝑢𝜉 such that 𝜋(𝑤) ≤ 𝑟
there is 𝑤′ ≤ 𝑤 in 𝐷𝜉,𝑟. Combining this with Strong Prikry lemma, we get:

Claim 5.8.3. For every 𝜉* < 𝜉 < 𝛿 and 𝑟 ≤*,𝑘,− 𝜋(𝑢𝜉) with 𝑟 ∈ ℳ𝜉+1 there

is 𝑟 ≤*,𝑘,− 𝑢𝜉 with 𝑟 ∈ ℳ𝜉+1, 𝜋(𝑟) ≤*,𝑘,− 𝑟 and a set 𝑧 ∈ ℳ𝜉+1, such that

(1) 𝑦𝜉 ⊆ 𝑧 ⊆ 𝑦𝜉+1;

(2) every �̄�-step extension of 𝑟 forces that �̇� ∩ 𝑧 = 𝜏 for some 𝜏 , but
𝜋(𝑢𝜉) ⊩P𝜆

“𝜏 ̸= 𝜎 ∩ 𝑧” for all 𝜎 ∈ 𝑋𝜉+1.

Proof of claim. Work in ℳ𝜉+1. Let 𝑟 ≤*,𝑘,− 𝑢𝜉 with 𝜋(𝑟) ≤*,𝑘,− 𝑟 be such
that for some 𝑛 ≥ �̄�, every 𝑛-step extension of 𝑟 is in 𝐷𝜉,𝑟. For all 𝑛-step
extension 𝑟↷�⃗�, let 𝑧�⃗� witness membership in 𝐷𝜉,𝑟 and let 𝑧 =

⋃︀
�⃗� 𝑧�⃗� . Let

𝑟′ ≤*,𝑘,− 𝑟 be such that every �̄�-step extension of 𝑟′ decides �̇� ∩ 𝑧. Then 𝑟′

is as desired. □

For simplicity, say 𝜉* = 0. Let us define a sequence ⟨𝑟𝜉, 𝑠𝜉 | 𝜉 < 𝛿⟩ by

induction as follows. Let 𝑟 ≤*,𝑘 𝜋(𝑢0) be such that 𝑟↷+𝑘 ≤ 𝜋(𝑢𝛿)
↷+𝑘 (see

Lemma 5.6(2)). Let 𝑟0 ≤*,𝑘,− 𝑢0 be as in the above claim when regarded
for 𝜉 = 0 and 𝑟. By further ≤*,𝑘,−-extending 𝑟0 we may assume that all of
its �̄�-extensions decide �̇� ∩ 𝑦. Let 𝑠0 ≤*,𝑘 𝑟 be such that

𝑠0
↷�⃗� = 𝜋(𝑟0)

↷�⃗� for all �⃗� ∈
∏︀𝑘

𝑖=ℓ𝐴
𝜋(𝑟0)
𝑖 .
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To ensure this choice we make use of Remark 5.7 in page 26.

Suppose that ⟨𝑟𝜁 , 𝑠𝜁 | 𝜁 < 𝜉⟩ has been defined so that

∙ �⃗� := ⟨𝑠𝜁 | 𝜁 < 𝜉⟩ is ≤*,𝑘-decreasing;

∙ 𝜋(𝑟𝜁)
↷�⃗� = 𝑠𝜁

↷�⃗� for all �⃗� ∈
∏︀𝑘

𝑖=ℓ𝐴
𝜋(𝑟𝜁)
𝑖 and 𝜁 < 𝜉.

Since 𝜉 < 𝛿 < 𝜅𝑘+1 there is a ≤*,𝑘-lower bound for �⃗�; call it 𝑠*. By
Lemma 5.6(2) there is 𝑟𝜉 ≤*,𝑘 𝜋(𝑢𝜉) such that 𝑟𝜉

↷+𝑘 ≤ 𝑠*↷+𝑘. Apply

the previous claim with respect to 𝜉 and 𝑟𝜉 to produce 𝑟𝜉 ≤*,𝑘,− 𝑢𝜉 such

that 𝜋(𝑟𝜉) ≤*,𝑘,− 𝑟𝜉. As before, we may assume that all the �̄�-extensions of

𝑟𝜉 decide �̇� ∩ 𝑦. Using Remark 5.7, let 𝑠𝜉 ≤*,𝑘 𝑠* as above.

The upshot of the previous construction is a sequence ⟨𝑟𝜉 | 𝜉 < 𝛿⟩ such
that ⟨𝜋(𝑟𝜉)↷�⃗� | 𝜉 < 𝛿⟩ is≤*-decreasing, provided �⃗� is a Prikry point common
to the first (𝑘 − ℓ)-many measure one sets of the 𝑟𝜉’s. By passing to an
unbounded subset of 𝛿, we may assume that the measure one sets of the
𝑟𝜉’s at coordinates ℓ, ..., 𝑘 are in fact constant. Thus, by construction,

⟨𝜋(𝑟𝜉) | 𝜉 < 𝛿⟩ is ↷+𝑘 ≤-decreasing so we may take a ↷+𝑘 ≤-lower bound, �̄�

(Lemma 5.6(1)). Note that �̄�↷+𝑘 ≤ 𝜋(𝑢𝛿)
↷+𝑘.

Claim 5.8.4. ⟨𝑟𝜉 | 𝜉 < 𝛿⟩ and �̄� are as in the splitting lemma.

Proof of claim. It is enough to prove Clause (4) of the lemma. Let 𝜉 < 𝜁

and 𝑠, 𝑠′ be �̄�-extensions of 𝑟𝜉 and 𝑟𝜁 . Let 𝜏 and 𝜏 ′ be the P𝜆-values of �̇�∩ 𝑦
decided by 𝑠 and 𝑠′, respectively. By construction of 𝑟𝜉, 𝜏 is incompatible
with members of 𝑋𝜉+1 as forced by 𝜋(𝑢𝜉) (by Clause (3) in Claim 5.8.2)
Namely, for all 𝜎 ∈ 𝑋𝜉+1,

𝜋(𝑢𝜉) ⊩P𝜆
𝜏 ∩ 𝑦𝜉+1 ̸= 𝜎.

On the other hand, since 𝑠′ ≤�̄� 𝑟𝜁 ≤* 𝑢𝜁 , we have that 𝜏 ′ ∈ 𝑋𝜁 . Hence,
by Claim 5.8.1, 𝜏 ′ ∩ 𝑦𝜉+1 ∈ 𝑋𝜉+1. So,

𝜋(𝑢𝜉) ⊩P𝜆
𝜏 ∩ 𝑦𝜉+1 ̸= (𝜏 ′ ∩ 𝑦𝜉+1).

Since �̄�↷+𝑘 ≤ 𝜋(𝑢𝜉)
↷+𝑘 we get that �̄� also P𝜆-forces “𝜏 ̸= 𝜏 ′”. □

The above completes the proof of the splitting lemma. □

Remark 5.9. The same argument as above works working below any 𝑣 ≤*,𝑘,−

𝜋(𝑢). In that case the Splitting Lemma gives a condition �̄� ≤*,𝑘,− 𝑣.

The next theorem completes the proof of Theorem 1 in page 2.

Theorem 5.10. ITP(𝜆) holds in a generic extension by P𝜆.

Proof. For simplicity, suppose the initial condition 𝑢 ∈ 𝑗(P𝜆) has length 0.
Fix measurable cardinals ⟨𝛿𝑛 | 𝑛 < 𝜔⟩ such that 2𝜅�̄�+𝑛 < 𝛿𝑛 < 𝜅�̄�+𝑛+1; say
their measurability is witnessed by 𝛿𝑛-complete measures ⟨𝒰𝑛 | 𝑛 < 𝜔⟩.

We define a tree of conditions ⟨𝑟�⃗� | �⃗� ∈
∏︀

𝑛<𝑚 𝑌𝑚, 𝑚 < 𝜔⟩ ⊆ 𝑗(P𝜆),
where each 𝑌𝑚 ∈ 𝒰𝑚, a ≤*-decreasing sequence ⟨�̄�𝑛 | 𝑛 < 𝜔⟩ ⊆ P𝜆 and an
⊆-increasing sequence ⟨𝑦𝑛 | 𝑛 < 𝜔⟩ in 𝒫𝜆(𝜃) with the following properties:
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(1) 𝑟�⃗� ≤* 𝑟�⃗� in case �⃗� ⊑ �⃗�;
(2) �̄�𝑛+1 ≤*,𝑛,− �̄�𝑛;
(3) For each �⃗� ∈

∏︀
𝑛<𝑚 𝑌𝑚 and 𝜉 ∈ 𝑌𝑚, 𝑟�⃗�⌢⟨𝜉⟩ ≤*,𝑚,− 𝑟�⃗�;

(4) For each �⃗� all the �̄�-extensions of 𝑢�⃗� decide �̇� ∩ 𝑦|�⃗�|;
(5) For incompatible �⃗� and �⃗� , any two �̄�-extensions of 𝑢�⃗� and 𝑢�⃗� decide

incompatible values for �̇� ∩ 𝑦|�⃗�| and �̇� ∩ 𝑦|�⃗� |, as P𝜆-forced by �̄�|�⃗�∩�⃗� |,

By induction on |�⃗�|. First, apply the Splitting Lemma (Lemma 5.8) to the
triple ⟨𝑢, 𝛿�̄�, 𝜋(𝑢)⟩ to obtain ⟨𝑟𝜉 | 𝜉 < 𝛿�̄�⟩ and �̄��̄�, so that:

∙ 𝑟𝜉 ≤*,�̄�,− 𝑢 for all 𝜉 < 𝛿0;
∙ �̄�0

↷+�̄� ≤ 𝜋(𝑟𝜉)
↷+�̄� for all 𝜉 < 𝛿0;

∙ �̄�0 ≤*,�̄�,− 𝜋(𝑢).

Since �̄�0
↷+�̄� ≤ 𝜋(𝑟0)

↷+�̄�, there is 𝑤 ≤*,�̄� 𝜋(𝑟0) such that 𝑤↷+�̄� ≤ �̄�0
↷+�̄�

(by Lemma 5.6). Apply the Splitting Lemma to ⟨𝑟0, 𝛿1, 𝑤⟩ and get in return
a sequence ⟨𝑟0,𝜂 | 𝜂 < 𝛿1⟩ and �̄�1(0). As before, the following hold:

∙ 𝑟0,𝜂 ≤*,�̄�+1,− 𝑟0 for all 𝜂 < 𝛿1;
∙ �̄�1(0)

↷+�̄�+1 ≤ 𝜋(𝑟0,𝜂)
↷+�̄�+1 for all 𝜂 < 𝛿1;

∙ �̄�1(0) ≤*,�̄�+1,− 𝑤.

We keep applying the Splitting lemma for 𝑟𝜉, 𝜉 < 𝛿0 by induction of 𝜉.
Suppose we have defined ⟨⟨⟨𝑟𝜁,𝜂 | 𝜂 < 𝛿1⟩, �̄�1(𝜁)⟩ | 𝜁 < 𝜉⟩, so that ⟨�̄�1(𝜁) |
𝜁 < 𝜉⟩ is ≤*-decreasing except for the first �̄� + 1 measure one sets; more

formally, ⟨𝑢1(𝜁)↷�⃗� | 𝜁 < 𝜉⟩ is ≤*-decreasing provided �⃗� ∈
⋂︀

𝜁<𝜉

∏︀
𝑖≤�̄�𝐴

�̄�1(𝜁)
𝑖 .

▶ If 𝜉 = 𝜁+1, mimicking the argument in Lemma 5.6(2), find an auxiliary
condition 𝑧 ≤*,�̄�,− 𝜋(𝑟𝜉) with 𝑧

↷+�̄� = �̄�1(0)
↷+�̄� (i.e., 𝑧↷+�̄� ≤ �̄�1(0)

↷+�̄� and
�̄�1(0)

↷+�̄� ≤ 𝑧↷+�̄�). Invoke the Splitting Lemma for ⟨𝑟𝜉, 𝛿1, 𝑧⟩.
▶ 𝜉 is limit. Again, first we need an auxiliary condition. For ease of

notation, for the rest of the construction we assume that �̄� = 0. The general
case is analogous.

Claim 5.10.1. There is a condition 𝑤 such that 𝑤 ≤*,�̄� 𝜋(𝑟𝜉) and 𝑤
↷𝜈 ≤*

�̄�1(𝜁)
↷𝜈 for all 𝜈 ∈ 𝐴

�̄�1(𝜁)
0 and 𝜁 < 𝜉.

Proof. Let us show how to define such a condition:

EBPF-part: The EBPF-parts of 𝑢1(𝜁) (for 𝜁 < 𝜉) and 𝜋(𝑟𝜉) take the form

⟨(𝑎0, 𝐴𝜁
0, 𝑓

𝜁
0 )⟩

⌢𝑝𝜁 ↾ [1, 𝜔),

⟨(𝑎0, 𝐴0, 𝑓0)⟩⌢𝑝𝜋(𝑟𝜉) ↾ [1, 𝜔),

where 𝐴𝜁
0 ⊆ 𝐴0 and 𝑓0 ⊆ 𝑓 𝜁0 (because �̄�0

↷+0 ≤ 𝜋(𝑟𝜉)
↷+0).

The EBPF-part of 𝑤 is defined as

𝑝𝑤 := ⟨(𝑎0, 𝐴0,
⋃︀

𝜁<𝜉 𝑓
𝜁
0 )⟩⌢

⋀︀
𝜁<𝜉(𝑝𝜁 ↾ [1, 𝜔)),

where the latter is just a lower bound for the displayed conditions.



32 POVEDA AND SINAPOVA

Mitchell-part: Since ⟨�̄�1(𝜁)↷𝜈 | 𝜁 < 𝜉⟩ is ≤*-decreasing we have

dom(𝑐𝜁) = dom(𝑐𝜁
↷𝜈) ⊇ dom(𝑐𝜁

↷𝜈) = dom(𝑐𝜁) ⊇ dom(𝑐𝜋(𝑟𝜉)),

where 𝑐𝜁 is the Mitchell-part of �̄�1(𝜁). Let dom(𝑐𝑤) :=
⋃︀

𝜁<𝜉 dom(𝑐𝜁).

For each 𝛼 ∈ dom(𝑐𝑤) we choose dom(𝑐𝑤(𝛼)) in the obvious way towards
ensuring (𝑝𝑤, 𝑐𝑤) ∈ M. For each �⃗� ∈ dom(𝑐𝑤) define 𝑐𝑤(𝛼, �⃗�) as:

▶ If 𝛼 /∈ dom(𝑐𝜋(𝑟𝜉)) then

𝑐𝑤(𝛼, �⃗�) :=

{︃⋀︀
{𝑐𝜁(𝛼, �⃗�𝜁) | 𝛼 ∈ dom(𝑐𝜁), ⟨𝜋0⟩ ∈ dom(𝑐𝜁(𝛼))}, if |�⃗�| ≥ 2;

{⟨∅, 1lP↾𝛼⟩}, otherwise,

where �⃗�𝜁 is the sequence of the projections of �⃗� under 𝜋mc(𝑎𝑤∩𝛼),mc(𝑎�̄�1(𝜁)∩𝛼)’s.

▶ If 𝛼 ∈ dom(𝑐𝜋(𝑟𝜉)) then 𝑐𝑤(𝛼, �⃗�) is defined as above replacing the P ↾𝛼-
name in the second case by 𝑐𝜋(𝑟𝜉)(𝛼, ⟨𝜋⟩).

We leave to the reader checking that (𝑝𝑤, 𝑐𝑤) ∈ M and (𝑝𝑤, 𝑐𝑤) ≤*,0

(𝑝𝜋(𝑟𝜉), 𝑐
𝜋(𝑟𝜉)). Also note that (𝑝𝑤, 𝑐𝑤)

↷𝜈 ≤* (𝑝𝜁 , 𝑐𝜁)
↷𝜈 for all 𝜈 ∈ 𝐴𝜁

0.

Sharon part: Let us describe what to do at the first Sharon-like strategy.

For each 𝜈 ∈ 𝐴0 set 𝐼𝜈 := {𝜁 < 𝜉 | 𝜈 ∈ 𝐴𝜁
0}. Let 𝑤𝜈 denote a ≤*-lower

bound for ⟨𝜋(𝑟𝜉)↷𝜈⟩⌢⟨�̄�1(𝜁)↷𝜈 | 𝜁 ∈ 𝐼𝜈⟩ (this is possible as 𝜉 < 𝛿0 < 𝜅1).
Next, diagonalize the sequence ⟨𝑤𝜈 | 𝜈 ∈ 𝐴0⟩ thus finding 𝑤 ≤*,0 𝜋(𝑟𝜉)

(in fact, the first coordinate of 𝑤 is (𝑝𝑤, 𝑐𝑤)) such that 𝑤↷𝜈 ≤* 𝑤𝜈 for all

𝜈 ∈ 𝐴0. Note that for each 𝜁 < 𝜉 and 𝜈 ∈ 𝐴𝜁
0, 𝑤

↷𝜈 ≤* �̄�1(𝜁)
↷𝜈. □

After this we get an auxiliary condition 𝑤 such that 𝑤 ≤*,0 𝜋(𝑟𝜉) and

𝑤↷𝜈 ≤* �̄�1(𝜁)
↷𝜈 for 𝜈 ∈ 𝐴𝜁

0, 𝜁 < 𝜉. Apply the Splitting Lemma to the
triple ⟨𝑟𝜉, 𝛿1, 𝑤⟩ and obtain ⟨𝑟𝜉,𝜂 | 𝜂 < 𝛿1⟩ and �̄�1(𝜉). Clearly,

�̄�1(𝜉)
↷𝜈 ≤* �̄�1(𝜁)

↷𝜈 for all 𝜈 ∈
⋂︀

𝜁<𝜉 𝐴
𝜁
0.

Thereby we get ⟨𝑟𝜉,𝜂 | 𝜉 < 𝛿0, 𝜂 < 𝛿1⟩ and ⟨�̄�1(𝜉) | 𝜉 < 𝛿0⟩. Let us show

how one stabilizes the first two measure one sets of 𝑟𝜉,𝜂, ⟨𝐴𝜉,𝜂
0 , 𝐴𝜉,𝜂

1 ⟩. 16 This
will enable us to take lower bounds upon the �̄�1(𝜉)’s. For each 𝜉 < 𝛿0 let

Φ𝜉 : 𝜂 ↦→ ⟨𝐴𝜉,𝜂
0 , 𝐴𝜉,𝜂

1 ⟩. Since 𝛿1 is measurable and 2𝜅1 < 𝛿1 we find 𝐵1,𝜉 ∈ 𝒰1

where Φ𝜉 is constant; say with value ⟨𝐴𝜉
0, 𝐴

𝜉
1⟩. Since 𝛿0 < 𝜅1 it follows that

𝐵1 :=
⋂︀

𝜉<𝛿0
𝐵1,𝜉 ∈ 𝒰1 and 𝐴1 :=

⋂︀
𝜉<𝛿0

𝐴𝜉
1 is 𝐸1,mc(𝑎1)-large, where 𝑎1 is

common among the 𝑟𝜉,𝜂’s (by construction). Finally, use that 2𝜅0 < 𝛿0 to

find 𝐵0 ∈ 𝒰0 for which 𝐴
𝜉
0 is constant; say with value 𝐴0. Let us now look at

the sequences ⟨𝑟𝜉,𝜂 | 𝜉 ∈ 𝐵0, 𝜂 ∈ 𝐵1⟩ and ⟨�̄�1(𝜉) | 𝜉 ∈ 𝐵0⟩. By construction,

�̄�1(𝜉)
↷+1 ≤ 𝜋(𝑟𝜉,𝜂)

↷+1 for all 𝜂 < 𝛿1,

16Again, assume that �̄� = 0. In the general case we would be stabilizing measure one
sets at coordinates 𝑖 ≤ �̄�+ 1. The argument is the same.



PRIKRY-RIZED MITCHELL, TREE PROPERTIES AND REFLECTION 33

so that the first two measure one sets of �̄�1(𝜉) are 𝜋mc(𝑎0),mc(𝑎0∩𝜆)“𝐴
𝜉
𝑖 . Shrink

the second measure one set of each 𝑟𝜉,𝜂 (i.e., 𝐴𝜉
1) to 𝐴1. Do the same

with �̄�1(𝜉) using 𝜋mc(𝑎1),mc(𝑎1∩𝜆)“𝐴1. Keep denoting the resulting conditions

by 𝑟𝜉,𝜂 and �̄�1(𝜉). Note that now we are in conditions of taking a ≤*,1-
lower bound upon the ⟨�̄�1(𝜉) | 𝜉 ∈ 𝐵0⟩; call this �̄�1. Finally, let 𝑦1 :=⋃︀

𝜉∈𝐵0,𝜂∈𝐵1
𝑦𝜉,𝜂 where 𝑦𝜉,𝜂 ∈ 𝒫𝜆(𝜃) are given by the Splitting Lemma.

Recalling items (1)–(5) at the beginning of the proof (page 31) one con-
firms that ⟨𝑟𝜉,𝜂 | 𝜉 ∈ 𝐵0, 𝜂 ∈ 𝐵1⟩ and �̄�1 are as wished. In general one
proceeds by induction as explained above, allowing the 𝐵𝑖’s to get shrunk.
Since the measures 𝒰𝑛 are countably complete, we are fine in taking inter-
sections of these sets at the end; these will be the final 𝑌𝑛’s supporting the
tree of 𝑟�⃗�’s.

Let us now complete the proof of ITP(𝜆). As of now we have defined

⟨𝑟�⃗� | �⃗� ∈
∏︀

𝑛<𝑚 𝑌𝑛, 𝑛 < 𝜔⟩, ⟨�̄�1 | 𝑛 < 𝜔⟩ and ⟨𝑦𝑛 | 𝑛 < 𝜔⟩,

in the ground model, 𝑉 . Let �̄�𝜔 be a ≤*-lower bound for ⟨�̄�𝑛 | 𝑛 < 𝜔⟩ and
let 𝐺 ⊆ P𝜆 a 𝑉 -generic with �̄�𝜔 ∈ 𝐺.17

Claim 5.10.2. ITP(𝜆) holds in 𝑉 [𝐺].

Proof of claim. Since �̇� was forced to be an ineffable branch which is <𝜆-
approximated in 𝑉 [𝐺], letting 𝑐 ∈ 𝒫𝜆(𝜃)

𝑉 [𝐺] with 𝑐 ⊇
⋃︀

𝑛<𝜔 𝑦𝑛 we infer that
𝑏 ∩ 𝑐 ∈ 𝑉 [𝐺]. Inside 𝑉 [𝐺] the product

∏︀
𝑛<𝜔 𝛿𝑛 has cardinality 𝜆.

For each 𝑓 ∈
∏︀

𝑛<𝜔 𝑌𝑛 let 𝑟𝑓 be a ≤*-lower bound for ⟨𝑟𝑓↾𝑛 | 𝑛 < 𝜔⟩.
Such a condition exists because the 𝐺-part of each 𝑟𝑓↾𝑛 is captured by �̄�𝜔.

More precisely, we take a lower bound of an 𝜔 decreasing sequence 𝑟𝑓↾𝑛, 𝑛 <
𝜔 in 𝑉 [𝐺], such that for some 𝑢, each of them projects to 𝑢. First, for each
𝑖, the 𝑎𝑖-part of these conditions is the same on a tail end, so that’s what
we take, the measure one part 𝐴𝑖 projects to (by taking a subset) to 𝐴𝑢

𝑖 , so
when constructing 𝑟𝑓 we take the inverse image of 𝐴𝑢

𝑖 , to max(𝑎𝑖). And we
can take union of the Cohen parts using a covering argument, since by the
the Prikry lemma the number of possible values is < 𝜅+, which matches the
closure of the Cohens.

By construction, every �̄�-extension of 𝑟𝑓 decides the value of �̇�∩ 𝑐. Let 𝑠𝑓
be one of such extensions and let 𝑏𝑓 ∈ 𝑉 [𝐺] be the decided value. Since P𝜆 is

𝜆-cc and �̇�∩ 𝑐 has size <𝜆, there are <𝜆-many possible 𝑏𝑓 ’s. Working inside
𝑉 [𝐺], consider the map Φ: 𝑓 ↦→ 𝑏𝑓 . Using Clause (5) in page 31 one can
show that Φ is one-to-one. Therefore there are at least 𝜆-many such 𝑏𝑓 ’s.
This produces the desired contradiction and establishes ITP(𝜆) in 𝑉 [𝐺]. □

This completes the proof of Theorem 5.10. □

17Note that the arguments at the beginning of this section (see p.24) hold for an
arbitrary 𝑉 -generic filter and thus they remain valid for our particular 𝐺 with �̄�𝜔 ∈ 𝐺.
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6. Open question

Question 1. What configuarions can we get by by plugging other Prikry-
type forcings into the Mitchell-like functor of §2? More generally, can we
show an abstract lemma about combining Mitchell with Prikry?

Question 2. Can we generalize Theorem 1 to the case where the cardinal
𝜅 has uncountable cofinality?
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